Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(3): 618-621, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823515

RESUMO

Burkholderia thailandensis, an opportunistic pathogen found in the environment, is a bacterium closely related to B. pseudomallei, the cause of melioidosis. Human B. thailandensis infections are uncommon. We isolated B. thailandensis from water in Texas and Puerto Rico and soil in Mississippi in the United States, demonstrating a potential public health risk.


Assuntos
Infecções por Burkholderia , Burkholderia pseudomallei , Burkholderia , Melioidose , Estados Unidos , Humanos , Infecções por Burkholderia/microbiologia
2.
PLoS One ; 17(7): e0270997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905049

RESUMO

Melioidosis is an underreported human disease of tropical and sub-tropical regions caused by the saprophyte Burkholderia pseudomallei. Although most global melioidosis cases are reported from tropical regions in Southeast Asia and northern Australia, there are multiple occurrences from sub-tropical regions, including the United States (U.S.). Most melioidosis cases reported from the continental U.S. are the result of acquiring the disease during travel to endemic regions or from contaminated imported materials. Only two human melioidosis cases from the continental U.S. have likely acquired B. pseudomallei directly from local environments and these cases lived only ~7 km from each other in rural Texas. In this study, we assessed the risk of acquiring melioidosis from the environment within the continental U.S. by surveying for B. pseudomallei in the environment in Texas where these two human melioidosis cases likely acquired their infections. We sampled the environment near the homes of the two cases and at additional sampling locations in surrounding counties in Texas that were selected based on ecological niche modeling. B. pseudomallei was not detected at the residences of these two cases or in the surrounding region. These negative data are important to demonstrate that B. pseudomallei is rare in the environment in the U.S. even at locations where locally acquired human cases likely have occurred, documenting the low risk of acquiring B. pseudomallei infection from the environment in the continental U.S.


Assuntos
Burkholderia pseudomallei , Melioidose , Austrália/epidemiologia , Humanos , Melioidose/epidemiologia , Texas , Viagem , Estados Unidos/epidemiologia
3.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468703

RESUMO

By late 2020, the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had caused tens of millions of infections and over 1 million deaths worldwide. A protective vaccine and more effective therapeutics are urgently needed. We evaluated a new poly(ADP-ribose) polymerase (PARP) inhibitor, stenoparib, that recently advanced to phase II clinical trials for treatment of ovarian cancer, for activity against human respiratory coronaviruses, including SARS-CoV-2, in vitro Stenoparib exhibits dose-dependent suppression of SARS-CoV-2 multiplication and spread in Vero E6 monkey kidney and Calu-3 human lung adenocarcinoma cells. Stenoparib was also strongly inhibitory to the human seasonal respiratory coronavirus HCoV-NL63. Compared to remdesivir, which inhibits viral replication downstream of cell entry, stenoparib impedes entry and postentry processes, as determined by time-of-addition (TOA) experiments. Moreover, a 10 µM dosage of stenoparib-below the approximated 25.5 µM half-maximally effective concentration (EC50)-combined with 0.5 µM remdesivir suppressed coronavirus growth by more than 90%, indicating a potentially synergistic effect for this drug combination. Stenoparib as a stand-alone or as part of combinatorial therapy with remdesivir should be a valuable addition to the arsenal against COVID-19.IMPORTANCE New therapeutics are urgently needed in the fight against COVID-19. Repurposing drugs that are either already approved for human use or are in advanced stages of the approval process can facilitate more rapid advances toward this goal. The PARP inhibitor stenoparib may be such a drug, as it is currently in phase II clinical trials for the treatment of ovarian cancer and its safety and dosage in humans have already been established. Our results indicate that stenoparib possesses strong antiviral activity against SARS-CoV-2 and other coronaviruses in vitro. This activity appears to be based on multiple modes of action, where both pre-entry and postentry viral replication processes are impeded. This may provide a therapeutic advantage over many current options that have a narrower target range. Moreover, our results suggest that stenoparib and remdesivir in combination may be especially potent against coronavirus infection.


Assuntos
Antivirais/farmacologia , COVID-19/virologia , Coronavirus Humano NL63/efeitos dos fármacos , Isoquinolinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Quinazolinonas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Antimetabólitos/farmacologia , Compostos Azo , Chlorocebus aethiops , Coronavirus Humano NL63/enzimologia , Reposicionamento de Medicamentos , Humanos , SARS-CoV-2/enzimologia , Células Vero , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...