Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 50(2): 285-294, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38036310

RESUMO

OBJECTIVE: Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. METHODS: The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 µm × 160 µm built on top of an application-specific integrated circuit that generates transmission signals and digitizes the received signals. To reduce the number of cables in the catheter to a feasible number, we implement subarray beamforming and digitization in receive and use a combination of time-division multiplexing and pulse amplitude modulation data transmission, achieving an 18-fold reduction. The proposed imaging scheme employs seven fan-shaped diverging transmit beams operating at a pulse repetition frequency of 7.7 kHz to obtain a high frame rate. The performance of the prototype is characterized, and its functionality is fully verified. RESULTS: The transducer exhibits a transmit efficiency of 28 Pa/V at 5 cm per element and a bandwidth of 60% in transmission. In receive, a dynamic range of 80 dB is measured with a minimum detectable pressure of 10 Pa per element. The element yield of the prototype is 98%, indicating the efficacy of the manufacturing process. The transducer is capable of imaging at a frame rate of up to 1000 volumes/s and is intended to cover a volume of 70° × 70° × 10 cm. CONCLUSION: These advanced imaging capabilities have the potential to support complex interventional procedures and enable full-volumetric flow, tissue, and electromechanical wave tracking in the heart.


Assuntos
Ecocardiografia Tridimensional , Ecocardiografia Transesofagiana , Imagens de Fantasmas , Ecocardiografia Transesofagiana/métodos , Ecocardiografia Tridimensional/métodos , Coração , Transdutores , Ultrassonografia/métodos , Desenho de Equipamento
2.
Ultrasound Med Biol ; 49(1): 388-397, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241587

RESUMO

Ultrasound contrast-mediated medical imaging and therapy both rely on the dynamics of micron- and nanometer-sized ultrasound cavitation nuclei, such as phospholipid-coated microbubbles and phase-change droplets. Ultrasound cavitation nuclei respond non-linearly to ultrasound on a nanosecond time scale that necessitates the use of ultra-high-speed imaging to fully visualize these dynamics in detail. In this study, we developed an ultra-high-speed optical imaging system that can record up to 20 million frames per second (Mfps) by coupling two small-sized, commercially available, 10-Mfps cameras. The timing and reliability of the interleaved cameras needed to achieve 20 Mfps was validated using two synchronized light-emitting diode strobe lights. Once verified, ultrasound-activated microbubble responses were recorded and analyzed. A unique characteristic of this coupled system is its ability to be reconfigured to provide orthogonal observations at 10 Mfps. Acoustic droplet vaporization was imaged from two orthogonal views, by which the 3-D dynamics of the phase transition could be visualized. This optical imaging system provides the temporal resolution and experimental flexibility needed to further elucidate the dynamics of ultrasound cavitation nuclei to potentiate the clinical translation of ultrasound-mediated imaging and therapy developments.


Assuntos
Meios de Contraste , Microbolhas , Reprodutibilidade dos Testes , Ultrassonografia , Volatilização
3.
Ultrasound Med Biol ; 49(1): 237-255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253231

RESUMO

There is an increased desire for miniature ultrasound probes with small apertures to provide volumetric images at high frame rates for in-body applications. Satisfying these increased requirements makes simultaneous achievement of a good lateral resolution a challenge. As micro-beamforming is often employed to reduce data rate and cable count to acceptable levels, receive processing methods that try to improve spatial resolution will have to compensate the introduced reduction in focusing. Existing beamformers do not realize sufficient improvement and/or have a computational cost that prohibits their use. Here we propose the use of adaptive beamforming by deep learning (ABLE) in combination with training targets generated by a large aperture array, which inherently has better lateral resolution. In addition, we modify ABLE to extend its receptive field across multiple voxels. We illustrate that this method improves lateral resolution both quantitatively and qualitatively, such that image quality is improved compared with that achieved by existing delay-and-sum, coherence factor, filtered-delay-multiplication-and-sum and Eigen-based minimum variance beamformers. We found that only in silica data are required to train the network, making the method easily implementable in practice.


Assuntos
Aprendizado Profundo , Imagens de Fantasmas , Imageamento Tridimensional , Ultrassonografia/métodos , Projetos de Pesquisa , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
4.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36502021

RESUMO

Ultrasonic flow meters (UFMs) based on transducer arrays offer several advantages. With electronic beam steering, it is possible to tune the steering angle of the beam for optimal signal-tonoise ratio (SNR) upon reception. Moreover, multiple beams can be generated to propagate through different travel paths, covering a wider section of the flow profile. Furthermore, in a clamp-on configuration, UFMs based on transducer arrays can perform self-calibration. In this manner, userinput is minimized and measurement repeatability is increased. In practice, transducer array elements may break down. This could happen due to aging, exposure to rough environments, and/or rough mechanical contact. As a consequence of inactive array elements, the measured transit time difference contains two offsets. One offset originates from non-uniform spatial sampling of the generated wavefield. Another offset originates from the ill-defined beam propagating through a travel path different from the intended one. In this paper, an algorithm is proposed that corrects for both of these offsets. The algorithm also performs a filtering operation in the frequency-wavenumber domain of all spurious (i.e., flow-insensitive) wave modes. The advantage of implementing the proposed algorithm is demonstrated on simulations and measurements, showing improved accuracy and precision of the transit time differences compared to the values obtained when the algorithm is not applied. The proposed algorithm can be implemented in both in-line and clamp-on configuration of UFMs based on transducer arrays.


Assuntos
Algoritmos , Transdutores , Ultrassonografia , Ultrassom
5.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560168

RESUMO

High frame rate three-dimensional (3D) ultrasound imaging would offer excellent possibilities for the accurate assessment of carotid artery diseases. This calls for a matrix transducer with a large aperture and a vast number of elements. Such a matrix transducer should be interfaced with an application-specific integrated circuit (ASIC) for channel reduction. However, the fabrication of such a transducer integrated with one very large ASIC is very challenging and expensive. In this study, we develop a prototype matrix transducer mounted on top of multiple identical ASICs in a tiled configuration. The matrix was designed to have 7680 piezoelectric elements with a pitch of 300 µm × 150 µm integrated with an array of 8 × 1 tiled ASICs. The performance of the prototype is characterized by a series of measurements. The transducer exhibits a uniform behavior with the majority of the elements working within the -6 dB sensitivity range. In transmit, the individual elements show a center frequency of 7.5 MHz, a -6 dB bandwidth of 45%, and a transmit efficiency of 30 Pa/V at 200 mm. In receive, the dynamic range is 81 dB, and the minimum detectable pressure is 60 Pa per element. To demonstrate the imaging capabilities, we acquired 3D images using a commercial wire phantom.


Assuntos
Imageamento Tridimensional , Transdutores , Desenho de Equipamento , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Artérias Carótidas/diagnóstico por imagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-36067108

RESUMO

Two-dimensional (2-D) arrays offer volumetric imaging capabilities without the need for probe translation or rotation. A sparse array with elements seeded in a tapering spiral pattern enables one-to-one connection to an ultrasound machine, thus allowing flexible transmission and reception strategies. To test the concept of sparse spiral array imaging, we have designed, realized, and characterized two prototype probes designed at 2.5-MHz low-frequency (LF) and 5-MHz high-frequency (HF) center frequencies. Both probes share the same electronic design, based on piezoelectric ceramics and rapid prototyping with printed circuit board substrates to wire the elements to external connectors. Different center frequencies were achieved by adjusting the piezoelectric layer thickness. The LF and HF prototype probes had 88% and 95% of working elements, producing peak pressures of 21 and 96 kPa/V when focused at 5 and 3 cm, respectively. The one-way -3-dB bandwidths were 26% and 32%. These results, together with experimental tests on tissue-mimicking phantoms, show that the probes are viable for volumetric imaging.


Assuntos
Cerâmica , Transdutores , Cerâmica/química , Desenho de Equipamento , Imagens de Fantasmas , Ultrassonografia
7.
Sensors (Basel) ; 22(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890749

RESUMO

Clamp-on ultrasonic flow meters (UFMs) are installed on the outside of the pipe wall. Typically, they consist of two single-element transducers mounted on angled wedges, which are acoustically coupled to the pipe wall. Before flow metering, the transducers are placed at the correct axial position by manually moving one transducer along the pipe wall until the maximum amplitude of the relevant acoustic pulse is obtained. This process is time-consuming and operator-dependent. Next to this, at least five parameters of the pipe and the liquid need to be provided manually to compute the flow speed. In this work, a method is proposed to obtain the five parameters of the pipe and the liquid required to compute the flow speed. The method consists of obtaining the optimal angles for different wave travel paths by varying the steering angle of the emitted acoustic beam systematically. Based on these optimal angles, a system of equations is built and solved to extract the desired parameters. The proposed method was tested experimentally with a custom-made clamp-on UFM consisting of two linear arrays placed on a water-filled stainless steel pipe. The obtained parameters of the pipe and the liquid correspond very well with the expected (nominal) values. Furthermore, the performed experiment also demonstrates that a clamp-on UFM based on transducer arrays can achieve self-alignment without the need to manually move the transducers.


Assuntos
Transdutores , Ultrassom , Acústica , Desenho de Equipamento
8.
Artigo em Inglês | MEDLINE | ID: mdl-35797321

RESUMO

In a recent study, we proposed a technique to correct aberration caused by the skull and reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. Given a sound speed map, the arrival times were calculated using a fast marching technique (FMT), which solves the Eikonal equation and, therefore, is computationally expensive for real-time imaging. In this article, we introduce a two-point ray tracing method, based on Fermat's principle, for fast calculation of the travel times in the presence of a layered aberrator in front of the ultrasound probe. The ray tracing method along with the reconstruction technique is implemented on a graphical processing unite (GPU). The point spread function (PSF) in a wire phantom image reconstructed with the FMT and the GPU implementation was studied with numerical synthetic data and experiments with a bone-mimicking plate and a sagittally cut human skull. The numerical analysis showed that the error on travel times is less than 10% of the ultrasound temporal period at 2.5 MHz. As a result, the lateral resolution was not significantly degraded compared with images reconstructed with FMT-calculated travel times. The results using the synthetic, bone-mimicking plate, and skull dataset showed that the GPU implementation causes a lateral/axial localization error of 0.10/0.20, 0.15/0.13, and 0.26/0.32 mm compared with a reference measurement (no aberrator in front of the ultrasound probe), respectively. For an imaging depth of 70 mm, the proposed GPU implementation allows reconstructing 19 frames/s with full synthetic aperture (96 transmission events) and 32 frames/s with multiangle plane wave imaging schemes (with 11 steering angles) for a pixel size of [Formula: see text]. Finally, refraction-corrected power Doppler imaging is demonstrated with a string phantom and a bone-mimicking plate placed between the probe and the moving string. The proposed approach achieves a suitable frame rate for clinical scanning while maintaining the image quality.


Assuntos
Processamento de Imagem Assistida por Computador , Crânio , Ultrassonografia , Algoritmos , Humanos , Imagens de Fantasmas , Som
9.
J Acoust Soc Am ; 151(6): 3993, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35778226

RESUMO

Ultrasound (US) contrast agents consist of microbubbles ranging from 1 to 10 µm in size. The acoustical response of individual microbubbles can be studied with high-frame-rate optics or an "acoustical camera" (AC). The AC measures the relative microbubble oscillation while the optical camera measures the absolute oscillation. In this article, the capabilities of the AC are extended to measure the absolute oscillations. In the AC setup, microbubbles are insonified with a high- (25 MHz) and low-frequency US wave (1-2.5 MHz). Other than the amplitude modulation (AM) from the relative size change of the microbubble (employed in Renaud, Bosch, van der Steen, and de Jong (2012a). "An 'acoustical camera' for in vitro characterization of contrast agent microbubble vibrations," Appl. Phys. Lett. 100(10), 101911, the high-frequency response from individual vibrating microbubbles contains a phase modulation (PM) from the microbubble wall displacement, which is the extension described here. The ratio of PM and AM is used to determine the absolute radius, R0. To test this sizing, the size distributions of two monodisperse microbubble populations ( R = 2.1 and 3.5 µm) acquired with the AC were matched to the distribution acquired with a Coulter counter. As a result of measuring the absolute size of the microbubbles, this "extended AC" can capture the full radial dynamics of single freely floating microbubbles with a throughput of hundreds of microbubbles per hour.


Assuntos
Microbolhas , Rádio (Anatomia) , Meios de Contraste , Ultrassonografia
10.
J Acoust Soc Am ; 151(5): 3316, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35649942

RESUMO

Over the last 15 years, literature on nondestructive testing has shown that the generation of higher harmonics and nonlinear mixing of waves could be used to obtain the nonlinearity parameters of an elastic medium and thereby gather information about its state, e.g., aging and fatigue. To design ultrasound measurement setups based on these phenomena, efficient numerical modeling tools are needed. In this paper, the iterative nonlinear contrast source method for numerical modeling of nonlinear acoustic waves is extended to the one-dimensional elastic case. In particular, nonlinear mixing of two collinear bulk waves (one compressional, one shear) in a homogeneous, isotropic medium is considered, taking into account its third-order elastic constants ( A, B, and C). The obtained results for nonlinear propagation are in good agreement with a benchmark solution based on the modified Burgers equation. The results for the resonant waves that are caused by the one-way and two-way mixing of primary waves are in quantitative agreement with the results in the literature [Chen, Tang, Zhao, Jacobs, and Qu, J. Acoust. Soc. Am. 136(5), 2389-2404 (2014)]. The contrast source approach allows the identification of the propagating and evanescent components of the scattered wavefield in the wavenumber-frequency domain, which provides physical insight into the mixing process and explains the propagation direction of the resonant wave.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35749331

RESUMO

Common clamp-on ultrasonic flow meters consist of two single-element transducers placed on the pipe wall. Flow speed is measured noninvasively, i.e., without interrupting the flow and without perforating the pipe wall, which also minimizes safety risks and avoids pressure drops inside the pipe. However, before metering, the transducers have to be carefully positioned along the pipe axis to correctly align the acoustic beams and obtain a well-calibrated flowmeter. This process is done manually, is dependent on the properties of the pipe and the liquid, does not account for pipe imperfections, and becomes troublesome on pipelines with an intricate shape. Matrix transducer arrays are suitable to dynamically steer acoustic beams and realize self-alignment upon reception, without user input. In this work, the design of a broadband 37×17 matrix array (center frequency of 1 MHz) to perform clamp-on ultrasonic flow measurements over a wide range of liquids ( c=1000-2000 m/s, α ≤ 1 dB/MHz · cm) and pipe sizes is presented. Three critical aspects were assessed: efficiency, electronic beam steering, and wave mode conversion in the pipe wall. A prototype of a proof-of-concept flowmeter consisting of two 36-element linear arrays (center frequency of 1.1 MHz) was fabricated and placed on a 1-mm-thick, 40-mm inner diameter stainless steel pipe in a custom-made flow loop filled with water. At resonance, simulated and measured efficiencies in water of the linear arrays compared well: 0.88 and 0.81 kPa/V, respectively. Mean flow measurements were achieved by electronic beam steering of the acoustic beams and using both compressional and shear waves generated in the pipe wall. Correlation coefficients of between measured and reference flow speeds were obtained, thus showing the operational concept of an array-based clamp-on ultrasonic flowmeter.


Assuntos
Transdutores , Ultrassom , Acústica , Desenho de Equipamento , Água
12.
Artigo em Inglês | MEDLINE | ID: mdl-35759589

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is normally treated by RF ablation. Intracardiac echography (ICE) is widely employed during RF ablation procedures to guide the electrophysiologist in navigating the ablation catheter, although only 2-D probes are currently clinically used. A 3-D ICE catheter would not only improve visualization of the atrium and ablation catheter, but it might also provide the 3-D mapping of the electromechanical wave (EW) propagation pattern, which represents the mechanical response of cardiac tissue to electrical activity. The detection of this EW needs 3-D high-frame-rate imaging, which is generally only realizable in tradeoff with channel count and image quality. In this simulation-based study, we propose a high volume rate imaging scheme for a 3-D ICE probe design that employs 1-D micro-beamforming in the elevation direction. Such a probe can achieve a high frame rate while reducing the channel count sufficiently for realization in a 10-Fr catheter. To suppress the grating-lobe (GL) artifacts associated with micro-beamforming in the elevation direction, a limited number of fan-shaped beams with a wide azimuthal and narrow elevational opening angle are sequentially steered to insonify slices of the region of interest. An angular weighted averaging of reconstructed subvolumes further reduces the GL artifacts. We optimize the transmit beam divergence and central frequency based on the required image quality for EW imaging (EWI). Numerical simulation results show that a set of seven fan-shaped transmission beams can provide a frame rate of 1000 Hz and a sufficient spatial resolution to visualize the EW propagation on a large 3-D surface.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Artefatos , Fibrilação Atrial/cirurgia , Ecocardiografia/métodos , Átrios do Coração/diagnóstico por imagem , Humanos
13.
J Control Release ; 347: 460-475, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545132

RESUMO

Ultrasound insonification of microbubbles can locally enhance drug delivery by increasing the cell membrane permeability. To aid development of a safe and effective therapeutic microbubble, more insight into the microbubble-cell interaction is needed. In this in vitro study we aimed to investigate the initial 3D morphology of the endothelial cell membrane adjacent to individual microbubbles (n = 301), determine whether this morphology was affected upon binding and by the type of ligand on the microbubble, and study its influence on microbubble oscillation and the drug delivery outcome. High-resolution 3D confocal microscopy revealed that targeted microbubbles were internalized by endothelial cells, while this was not the case for non-targeted or IgG1-κ control microbubbles. The extent of internalization was ligand-dependent, since αvß3-targeted microbubbles were significantly more internalized than CD31-targeted microbubbles. Ultra-high-speed imaging (~17 Mfps) in combination with high-resolution confocal microscopy (n = 246) showed that microbubble internalization resulted in a damped microbubble oscillation upon ultrasound insonification (2 MHz, 200 kPa peak negative pressure, 10 cycles). Despite damped oscillation, the cell's susceptibility to sonoporation (as indicated by PI uptake) was increased for internalized microbubbles. Monitoring cell membrane integrity (n = 230) showed the formation of either a pore, for intracellular delivery, or a tunnel (i.e. transcellular perforation), for transcellular delivery. Internalized microbubbles caused fewer transcellular perforations and smaller pore areas than non-internalized microbubbles. In conclusion, studying microbubble-mediated drug delivery using a state-of-the-art imaging system revealed receptor-mediated microbubble internalization and its effect on microbubble oscillation and resulting membrane perforation by pores and tunnels.


Assuntos
Células Endoteliais , Microbolhas , Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Ligantes
14.
Artigo em Inglês | MEDLINE | ID: mdl-35100111

RESUMO

Transcranial ultrasound imaging (TUI) is a diagnostic modality with numerous applications, but unfortunately, it is hindered by phase aberration caused by the skull. In this article, we propose to reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. First, the compressional sound velocity of the aberrator (i.e., the skull) is estimated using the bidirectional headwave technique. The medium is described with four layers (i.e., lens, water, skull, and water), and a fast marching method calculates the travel times between individual array elements and image pixels. Finally, a delay-and-sum algorithm is used for image reconstruction with coherent compounding. The point spread function (PSF) in a wire phantom image and reconstructed with the conventional technique (using a constant sound speed throughout the medium), and the proposed method was quantified with numerical synthetic data and experiments with a bone-mimicking plate and a human skull, compared with the PSF achieved in a ground truth image of the medium without the aberrator (i.e., the bone plate or skull). A phased-array transducer (P4-1, ATL/Philips, 2.5 MHz, 96 elements, pitch = 0.295 mm) was used for the experiments. The results with the synthetic signals, the bone-mimicking plate, and the skull indicated that the proposed method reconstructs the scatterers with an average lateral/axial localization error of 0.06/0.14 mm, 0.11/0.13 mm, and 1.0/0.32 mm, respectively. With the human skull, an average contrast ratio (CR) and full-width-half-maximum (FWHM) of 37.1 dB and 1.75 mm were obtained with the proposed approach, respectively. This corresponds to an improvement of CR and FWHM by 7.1 dB and 36% compared with the conventional method, respectively. These numbers were 12.7 dB and 41% with the bone-mimicking plate.


Assuntos
Processamento de Imagem Assistida por Computador , Crânio , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Crânio/diagnóstico por imagem , Ultrassonografia
15.
Artigo em Inglês | MEDLINE | ID: mdl-34506280

RESUMO

Current ultrasonic clamp-on flow meters consist of a pair of single-element transducers that are carefully positioned before use. This positioning process consists of manually finding the distance between the transducer elements, along the pipe axis, for which maximum signal-to-noise ratio (SNR) is achieved. This distance depends on the sound speed, thickness, and diameter of the pipe and on the sound speed of the liquid. However, these parameters are either known with low accuracy or completely unknown during positioning, making it a manual and troublesome process. Furthermore, even when sensor positioning is done properly, uncertainty about the mentioned parameters, and therefore on the path of the acoustic beams, limits the final accuracy of flow measurements. In this research, we address these issues using an ultrasonic clamp-on flow meter consisting of two matrix arrays, which enables the measurement of pipe and liquid parameters by the flow meter itself. Automatic parameter extraction, combined with the beam-steering capabilities of transducer arrays, yields a sensor capable of compensating for pipe imperfections. Three parameter extraction procedures are presented. In contrast to similar literature, the procedures proposed here do not require that the medium be submerged nor do they require a priori information about it. First, axial Lamb waves are excited along the pipe wall and recorded with one of the arrays. A dispersion curve-fitting algorithm is used to extract bulk sound speeds and wall thickness of the pipe from the measured dispersion curves. Second, circumferential Lamb waves are excited, measured, and corrected for dispersion to extract the pipe diameter. Third, pulse-echo measurements provide the sound speed of the liquid. The effectiveness of the first two procedures has been evaluated using simulated and measured data of stainless steel and aluminum pipes, and the feasibility of the third procedure has been evaluated using simulated data.


Assuntos
Acústica , Ultrassom , Algoritmos , Som , Transdutores
16.
Artigo em Inglês | MEDLINE | ID: mdl-34086570

RESUMO

Volumetric ultrasound imaging of blood flow with microbubbles enables a more complete visualization of the microvasculature. Sparse arrays are ideal candidates to perform volumetric imaging at reduced manufacturing complexity and cable count. However, due to the small number of transducer elements, sparse arrays often come with high clutter levels, especially when wide beams are transmitted to increase the frame rate. In this study, we demonstrate with a prototype sparse array probe and a diverging wave transmission strategy, that a uniform transmission field can be achieved. With the implementation of a spatial coherence beamformer, the background clutter signal can be effectively suppressed, leading to a signal to background ratio improvement of 25 dB. With this approach, we demonstrate the volumetric visualization of single microbubbles in a tissue-mimicking phantom as well as vasculature mapping in a live chicken embryo chorioallantoic membrane.


Assuntos
Processamento de Imagem Assistida por Computador , Microbolhas , Animais , Embrião de Galinha , Imagens de Fantasmas , Transdutores , Ultrassonografia
17.
Ultrasonics ; 116: 106476, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34098419

RESUMO

Acoustic wave propagation in ultrasonic flow measurements is typically assumed to be linear and reciprocal. However, if the transmitting transducer generates a sufficiently high pressure, nonlinear wave propagation effects become significant. In flow measurements, this would translate into more information to estimate the flow and therefore a higher precision relative to the linear case. In this work, we investigate how the generated harmonics can be used to measure flow. Measurements in a custom-made flow loop and simulations using the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation will show that the second harmonic component provides similar transit time differences to those obtained from the fundamental component, their linear combination results in more precise flow measurements compared to the estimations with the fundamental component alone.

18.
Biomed Opt Express ; 12(3): 1543-1558, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33796371

RESUMO

Simultaneous visualization of the teeth and periodontium is of significant clinical interest for image-based monitoring of periodontal health. We recently reported the application of a dual-modality photoacoustic-ultrasound (PA-US) imaging system for resolving periodontal anatomy and periodontal pocket depths in humans. This work utilized a linear array transducer attached to a stepper motor to generate 3D images via maximum intensity projection. This prior work also used a medical head immobilizer to reduce artifacts during volume rendering caused by motion from the subject (e.g., breathing, minor head movements). However, this solution does not completely eliminate motion artifacts while also complicating the imaging procedure and causing patient discomfort. To address this issue, we report the implementation of an image registration technique to correctly align B-mode PA-US images and generate artifact-free 2D cross-sections. Application of the deshaking technique to PA phantoms revealed 80% similarity to the ground truth when shaking was intentionally applied during stepper motor scans. Images from handheld sweeps could also be deshaken using an LED PA-US scanner. In ex vivo porcine mandibles, pigmentation of the enamel was well-estimated within 0.1 mm error. The pocket depth measured in a healthy human subject was also in good agreement with our prior study. This report demonstrates that a modality-independent registration technique can be applied to clinically relevant PA-US scans of the periodontium to reduce operator burden of skill and subject discomfort while showing potential for handheld clinical periodontal imaging.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32746204

RESUMO

Phase aberration in transcranial ultrasound imaging (TUI) caused by the human skull leads to an inaccurate image reconstruction. In this article, we present a novel method for estimating the speed of sound and an adaptive beamforming technique for phase aberration correction in a flat polyvinylchloride (PVC) slab as a model for the human skull. First, the speed of sound of the PVC slab is found by extracting the overlapping quasi-longitudinal wave velocities of symmetrical Lamb waves in the frequency-wavenumber domain. Then, the thickness of the plate is determined by the echoes from its front and back side. Next, an adaptive beamforming method is developed, utilizing the measured sound speed map of the imaging medium. Finally, to minimize reverberation artifacts caused by strong scatterers (i.e., needles), a dual probe setup is proposed. In this setup, we image the medium from two opposite directions, and the final image can be the minimum intensity projection of the inherently co-registered images of the opposed probes. Our results confirm that the Lamb wave method estimates the longitudinal speed of the slab with an error of 3.5% and is independent of its shear wave speed. Benefiting from the acquired sound speed map, our adaptive beamformer reduces (in real time) a mislocation error of 3.1, caused by an 8 mm slab, to 0.1 mm. Finally, the dual probe configuration shows 7 dB improvement in removing reverberation artifacts of the needle, at the cost of only 2.4-dB contrast loss. The proposed image formation method can be used, e.g., to monitor deep brain stimulation procedures and localization of the electrode(s) deep inside the brain from two temporal bones on the sides of the human skull.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Imagens de Fantasmas , Som , Ultrassonografia
20.
Artigo em Inglês | MEDLINE | ID: mdl-33338016

RESUMO

In our paper titled "Lamb Waves and Adaptive Beamforming for Aberration Correction in Medical Ultrasound Imaging" [1], we mentioned that the superposition of the different symmetric (S) modes in the frequency-wavenumber (f-k) domain results in a high intensity region where its slope corresponds to the longitudinal wave speed in the slab. However, we have recently understood that this high intensity region belongs to the propagation of a wave called lateral wave or head wave [2-5]. It is generated if the longitudinal sound speed of the aberrator (i.e. the PVC slab) is larger than that of water and if the incident wavefront is curved. When the incidence angle at the interface between water and PVC is near the critical angle, the refracted wave in PVC re-radiates a small part of its energy into the fluid (i.e. the head wave). As discussed in [4], if the thickness of the waveguide is larger than the wavelength, the first arriving signal is the head wave. This is also the case in our study [1] where the ultrasound wavelength of a compressional wave in PVC was close to 1 mm, and a PVC slab with a thickness of 8 mm was used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...