Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(25): 9807-9817, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37294787

RESUMO

The pH evolution and corresponding changes in the UV-Vis-NIR absorption spectra of oxygenated neptunium (NpO2+ and NpO22+) and uranyl ions (UO22+) in nitric acid are investigated during titration with an aqueous NH3 solution. The speciation and precipitation regimes between acidic (pH 1.5) and alkaline (pH 10) conditions at room temperature are discussed to assess the suitability of Np(V) or Np(VI) in sol-gel conversion processes for fuel target fabrication. Under the applied experimental conditions, Np(V) hydrolyzes and precipitates into the insoluble hydroxide NpO2OH only above pH values 7.5 and an increase up to pH 10.0 is required to precipitate quantitatively. Np(VI) displays changes in the coordination environment of NpO22+ ions in the pH interval 1.6-4.0, similar to what is observed for U(VI). Precipitation into NpO3·H2O or other hydroxide compounds takes place between pH 4.0 and 5.9, which overlaps largely with precipitation of ammonium diuranate species from the U(VI) solution. The use of concentrated NH3 aqueous solution, as commonly used in the external gelation process, will allow to quantitatively precipitate both Np(V) and Np(VI) species. Internal gelation process conditions, on the other hand, seem incompatible with the high pH required to precipitate Np(V) completely. For fabricating mixed-oxide (U,Np) targets using sol-gel conversion, a feed broth containing Np(VI) and U(VI) will be required to achieve homogeneous gelation.

2.
MRS Adv ; 7(5-6): 100-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646392

RESUMO

Autoclave leaching experiments are conducted on three well-characterised, irradiated, and cladded mixed oxide fuel-rod segments with burnups ranging from 29 GWd/tHM to 52 GWd/tHM to investigate the instant release fraction of fission gases and long-lived fission products and to assess the long-term fuel matrix corrosion. The segments are exposed to bicarbonate solutions as reference groundwater at neutral pH and a synthetic young cementitious water at pH 13.5 under reducing atmosphere (4 vol% H2 in Ar at 40 bar pressure), since 2018. The initial leaching results for the fission products caesium and iodine as representative elements of the instant release fraction were found to depend on the leachate composition as well as on the fuel burnup.

3.
RSC Adv ; 12(20): 12416-12426, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480374

RESUMO

Reprocessing of spent nuclear fuel aims at improving resource efficiency and reducing its radiotoxicity and heat production in the long term. The necessary separation of certain metal ions from the spent fuel solutions can be achieved using different solvent extraction processes. For the scenario of the EURO-GANEX process, the use of the new, modified diglycolamide 2,2'-oxybis(N,N-didecylpropanamide) (mTDDGA) was recently proposed to simplify the current solvent composition and reduce extraction of fission products. Before further developing the process based on this new ligand, its stability under ionizing radiation conditions needs to be studied. For this reason, gamma irradiation experiments were conducted followed by analyses with high performance liquid chromatography coupled to a mass spectrometer (HPLC-MS). The determined degradation rate of mTDDGA was found to be lower than that of the reference molecule N,N,N',N'-tetra-n-octyl-diglycolamide (TODGA). Many identified degradation compounds of both molecules are analogues showing the same bond breaking, although also unreported de-methylation, double/triple de-alkylation and n-dodecane addition products were observed.

4.
Inorg Chem ; 60(14): 10550-10564, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34184880

RESUMO

Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin-orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) "oxo-type" bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 µB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.

5.
RSC Adv ; 11(11): 6014-6021, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35423126

RESUMO

The extraction of Am(iii), Cm(iii) and Eu(iii) by 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4BTPhen) from nitric acid solution was studied using the ionic liquid Aliquat-336 nitrate ([A336][NO3]) as diluent. Results show a high selectivity of the solvent for Am(iii) and Cm(iii) over Eu(iii), but rather slow extraction kinetics. The kinetics of CyMe4BTPhen were largely improved by the addition of 0.005 mol L-1 N,N,N',N'-tetra-n-octyl-diglycolamide (TODGA) as a phase transfer reagent and by the use of 1-octanol as co-diluent. The addition of the phase transfer catalyst and co-diluent did not compromise the selectivity towards the actinide/lanthanide separation and thus this four-component system can be successfully applied to separate Am(iii) and Cm(iii) from the lanthanides.

6.
Inorg Chem ; 59(7): 4576-4587, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32157876

RESUMO

A comprehensive analysis of X-ray absorption data obtained at the U L3-edge for a systematic series of single-valence (UO2, KUO3, UO3) and mixed-valence uranium compounds (U4O9, U3O7, U3O8) is reported. High-energy resolution fluorescence detection (HERFD) X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) methods were applied to evaluate U(IV) and U(V) environments, and in particular, to investigate the U3O7 local structure. We find that the valence state distribution in mixed-valence uranium compounds cannot be confidently quantified from a principal component analysis of the U L3-edge XANES data. The spectral line broadening, even when applying the HERFD-XANES method, is sensibly higher (∼3.9 eV) than the observed chemical shifts (∼2.4 eV). Additionally, the white line shape and position are affected not only by the chemical state, but also by crystal field effects, which appear well-resolved in KUO3. The EXAFS of a phase-pure U3O7 sample was assessed based on an average representation of the expanded U60O140 structure. Interatomic U-O distances are found mainly to occur at 2.18 (2), 2.33 (1), and 3.33 (5) Å, and can be seen to correspond to the spatial arrangement of cuboctahedral oxygen clusters. The interatomic distances derived from the EXAFS investigation support a mixed U(IV)-U(V) valence character in U3O7.

7.
Chem Commun (Camb) ; 54(70): 9757-9760, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30109321

RESUMO

The valence band electronic structures of mixed uranium oxides (UO2, U4O9, U3O7, U3O8, and ß-UO3) have been studied using the resonant inelastic X-ray scattering (RIXS) technique at the U M5 edge and computational methods. We show here that the RIXS technique and recorded U 5f-O 2p charge transfer excitations can be used to test the validity of theoretical approximations.

8.
Inorg Chem ; 57(7): 4196-4204, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29565573

RESUMO

The thermochemical behavior of low-temperature oxidation in fine UO2 powders has been investigated by simultaneous thermogravimetric analysis and differential scanning calorimetry. The evaluation of the thermochemical and kinetic data reveals a complex interplay between different mechanisms. The initial reaction concerns the rapid chemisorption of oxygen gas onto the surface of UO2 grains, having an activation energy of only 13.1 ± 0.6 kJ mol-1. The subsequent oxidation at temperatures between 40 and 100 °C occurs first at the surface via a field-assisted mechanism, which progresses via domain growth into the bulk. At more elevated temperatures, thermally activated diffusion becomes the dominant mechanism.

9.
Inorg Chem ; 56(12): 6784-6787, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28590135

RESUMO

A fundamental question concerning the chemical state of uranium in the binary oxides UO2, U4O9, U3O7, U3O8, and UO3 is addressed. By utilizing high energy resolution fluorescence detection X-ray absorption near edge spectroscopy (HERFD-XANES) at the uranium M4 edge, a novel technique in the tender X-ray region, we obtain the distribution of formal oxidation states in the mixed-valence oxides U4O9, U3O7, and U3O8. Moreover, we clearly identify a pivot from U(IV)-U(V) to U(V)-U(VI) charge compensation, corresponding with transition from a fluorite-type structure (U3O7) to a layered structure (U3O8). Such physicochemical properties are of interest to a broad audience of researchers and engineers active in domains ranging from fundamental physics to nuclear industry and environmental science.

10.
Inorg Chem ; 55(19): 9923-9936, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27648937

RESUMO

Polycrystalline U3O7 powder was synthesized by oxidation of UO2 powder under controlled conditions using in situ thermal analysis, and by heat treatment in a tubular furnace. The O/U ratio of the U3O7 phase was measured as 2.34 ± 0.01. The crystal structure was assessed from X-ray diffraction (XRD) and selected-area electron diffraction (SAED) data. Similar to U4O9-ε (more precisely U64O143), U3O7 exhibits a long-range ordered structure, which is closely related to the fluorite-type arrangement of UO2. Cations remain arranged identical to that in the fluorite structure, and excess anions form distorted cuboctahedral oxygen clusters, which periodically replace the fluorite anion arrangement. The structure can be described in an expanded unit cell containing 15 fluorite-like subcells (U15O35), and spanned by basis vectors A = ap - 2bp, B = -2ap + bp, and C = 3cp (lattice parameters of the subcell are ap = bp = 538.00 ± 0.02 pm and cp = 554.90 ± 0.02 pm; cp/ap = 1.031). The arrangement of cuboctahedra in U3O7 results in a layered structure, which is different from the well-known U4O9-ε crystal structure.

11.
Inorg Chem ; 55(8): 3915-27, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27015279

RESUMO

The nanostructure and phase evolution in low-temperature oxidized (40-250 °C), fine UO2 powders (<200 nm) have been investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The extent of oxidation was also measured via in situ thermogravimetric analysis. The oxidation of fine powders was found to proceed differently as compared to oxidation of coarse-grained UO2. No discrete surface oxide layer was observed and no U3O8 was formed, despite the high degree of oxidation (up to O/U = 2.45). Instead, nanosized (5-15 nm) amorphous nuclei (interpreted as amorphous UO3), unmodulated and modulated U4O9, and a continuous range of U3O7-z phases with varying tetragonal distortion (c/a > 1) were observed. Oxidation involves formation of higher uranium oxides in nanodomains near the grain surface which, initially, have a disordered defect structure ("disordered U4O9"). As oxidation progresses, domain growth increases and the long-period modulated structure of U4O9 develops ("ordered U4O9"). A similar mechanism is understood to happen also in U3O7-z.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...