Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antiviral Res ; 217: 105694, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532005

RESUMO

The antimalarial drug atovaquone was recently reported to inhibit the in vitro replication of different arboviruses, including chikungunya virus (CHIKV) and Zika virus (ZIKV). Furthermore, atovaquone was shown to block Plasmodium parasite transmission by Anopheles mosquitoes when the mosquitoes were exposed to low concentrations on treated surfaces (i.e. tarsal exposure). Therefore, we evaluated the anti-CHIKV and -ZIKV effects of atovaquone via tarsal exposure in Aedes aegypti mosquitoes. We first confirmed that atovaquone exerted a dose-dependent antiviral effect on CHIKV and ZIKV replication in mosquito-derived cells. The modest antiviral effect could be rescued by adding exogenous uridine. Next, we assessed the effect of tarsal exposure to atovaquone on the fitness of Ae. aegypti. Concentrations up to 100 µmol/m2 did not affect the fecundity and egg-hatching rate. No significant effect on mosquito survival was observed when mosquitoes were exposed to concentrations up to 25 µmol/m2. To evaluate the antiviral effect of atovaquone against CHIKV, we exposed female mosquitoes to 100 µmol/m2 atovaquone for 1h, after which the mosquitoes were immediately infected with CHIKV or ZIKV via bloodmeal. Atovaquone did not significantly reduce ZIKV or CHIKV infection in Ae. aegypti, but successfully blocked the transmission of CHIKV in saliva. Tarsal exposure to antiviral drugs could therefore be a potential new strategy to reduce virus transmission by mosquitoes.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Infecção por Zika virus , Zika virus , Animais , Feminino , Atovaquona , Mosquitos Vetores , Antivirais/farmacologia
2.
J Med Entomol ; 59(6): 2072-2079, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36130161

RESUMO

The emergence of West Nile virus and Usutu virus in Europe poses a significant risk to public health. In the absence of efficient antiviral therapy or vaccine candidates, the only strategy to control these arboviruses is to target the Culex (Diptera: Culicidae) mosquito vector. However, the selection pressure caused by exposure to insecticides for vector control or agricultural pest control can lead to insecticide resistance, thereby reducing the efficacy of insecticide-based vector control interventions. In Culex mosquitoes, two of the most common amino acid substitutions associated with insecticide resistance are the kdr L1014F in voltage gated sodium channels and G119S in acetylcholinesterase. In this study, Culex pipiens biotype pipiens, Culex torrentium, and Culex modestus were sampled from 2019 to 2021 in three distinct environmental habitats (urban, peri-urban, and agricultural) in and around the city of Leuven, Belgium. Individual mosquitoes were screened for two mutations resulting in L1014F and G119S amino acid substitutions. Both mutations were observed in Cx. pipiens and Cx. modestus but not in Cx. torrentium mosquitoes across the four collection sites. Furthermore, multi-resistance or cross-resistance in Cx. pipiens could be a threat in these areas, as both mutations were observed at low frequencies. These results provide the first report of kdr L1014F and ace-1 G119S resistance mutations in Cx. pipiens and Cx. modestus mosquitoes from Belgium, highlighting the importance of mosquito surveillance to design effective arbovirus outbreak control strategies.


Assuntos
Culex , Culicidae , Inseticidas , Piretrinas , Animais , Piretrinas/farmacologia , Bélgica , Organofosfatos/farmacologia , Acetilcolinesterase/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação
3.
J Virol ; 96(6): e0006022, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107376

RESUMO

The impact of the host microbiota on arbovirus infections is currently not well understood. Arboviruses are viruses transmitted through the bites of infected arthropods, predominantly mosquitoes or ticks. The first site of arbovirus inoculation is the biting site in the host skin, which is colonized by a complex microbial community that could possibly influence arbovirus infection. We demonstrated that preincubation of arboviruses with certain components of the bacterial cell wall, including lipopolysaccharides (LPS) of some Gram-negative bacteria and lipoteichoic acids or peptidoglycan of certain Gram-positive bacteria, significantly reduced arbovirus infectivity in vitro. This inhibitory effect was observed for arboviruses of different virus families, including chikungunya virus of the Alphavirus genus and Zika virus of the Flavivirus genus, showing that this is a broad phenomenon. A modest inhibitory effect was observed following incubation with a panel of heat-inactivated bacteria, including bacteria residing on the skin. No viral inhibition was observed after preincubation of cells with LPS. Furthermore, a virucidal effect of LPS on viral particles was noticed by electron microscopy. Therefore, the main inhibitory mechanism seems to be due to a direct effect on the virus particles. Together, these results suggest that bacteria are able to decrease the infectivity of alphaviruses and flaviviruses. IMPORTANCE During the past decades, the world has experienced a vast increase in epidemics of alphavirus and flavivirus infections. These viruses can cause severe diseases, such as hemorrhagic fever, encephalitis, and arthritis. Several alpha- and flaviviruses, such as chikungunya virus, Zika virus, and dengue virus, are significant global health threats because of their high disease burden, their widespread (re-)emergence, and the lack of (good) anti-arboviral strategies. Despite the clear health burden, alphavirus and flavivirus infection and disease are not fully understood. A knowledge gap in the interplay between the host and the arbovirus is the potential interaction with host skin bacteria. Therefore, we studied the effect of (skin) bacteria and bacterial cell wall components on alphavirus and flavivirus infectivity in cell culture. Our results show that certain bacterial cell wall components markedly reduced viral infectivity by interacting directly with the virus particle.


Assuntos
Alphavirus , Arbovírus , Parede Celular , Flavivirus , Alphavirus/patogenicidade , Alphavirus/fisiologia , Animais , Arbovírus/patogenicidade , Arbovírus/fisiologia , Bactérias , Vírus Chikungunya , Flavivirus/patogenicidade , Flavivirus/fisiologia , Lipopolissacarídeos , Microbiota , Zika virus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...