Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(12): 122701, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579210

RESUMO

^{140}Ce(n,γ) is a key reaction for slow neutron-capture (s-process) nucleosynthesis due to being a bottleneck in the reaction flow. For this reason, it was measured with high accuracy (uncertainty ≈5%) at the n_TOF facility, with an unprecedented combination of a high purity sample and low neutron-sensitivity detectors. The measured Maxwellian averaged cross section is up to 40% higher than previously accepted values. Stellar model calculations indicate a reduction around 20% of the s-process contribution to the Galactic cerium abundance and smaller sizeable differences for most of the heavier elements. No variations are found in the nucleosynthesis from massive stars.

2.
Phys Rev Lett ; 127(15): 152701, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34677992

RESUMO

One of the main neutron sources for the astrophysical s process is the reaction ^{13}C(α,n)^{16}O, taking place in thermally pulsing asymptotic giant branch stars at temperatures around 90 MK. To model the nucleosynthesis during this process the reaction cross section needs to be known in the 150-230 keV energy window (Gamow peak). At these sub-Coulomb energies, cross section direct measurements are severely affected by the low event rate, making us rely on input from indirect methods and extrapolations from higher-energy direct data. This leads to an uncertainty in the cross section at the relevant energies too high to reliably constrain the nuclear physics input to s-process calculations. We present the results from a new deep-underground measurement of ^{13}C(α,n)^{16}O, covering the energy range 230-300 keV, with drastically reduced uncertainties over previous measurements and for the first time providing data directly inside the s-process Gamow peak. Selected stellar models have been computed to estimate the impact of our revised reaction rate. For stars of nearly solar composition, we find sizeable variations of some isotopes, whose production is influenced by the activation of close-by branching points that are sensitive to the neutron density, in particular, the two radioactive nuclei ^{60}Fe and ^{205}Pb, as well as ^{152}Gd.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 1): 031301, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22060355

RESUMO

This work focuses on the mechanical response of dry granular materials under steady, simple shear conditions. In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear sum of a frictional and a kinetic component. The frictional and the kinetic contributions are modeled in the context of the critical state theory and the kinetic theory of dense granular gases, respectively; in the latter, the correlated motion among the particles, which is likely to occur at high concentration, is also included. In accordance with recent findings on disordered granular packings, the frictional component of stresses is assumed to vanish when the concentration is below the random loose packing. According to this approach, four nondimensional quantities govern steady, simple shear flows: the concentration, the shear to normal stress ratio, the ratio of the time scales associated with the motion perpendicular and parallel to the flow, and the ratio between the particle stiffness and the normal stress. The present theory allows us to reproduce, in a notable way, both numerical simulations on simple shear flows of disks and physical experiments on incline flows of glass spheres taken from the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...