Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4703, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409974

RESUMO

Long-lived excitons formed upon visible light absorption play an essential role in photovoltaics, photocatalysis, and even in high-density information storage. Here, we describe a self-assembled two-dimensional metal-organic crystal, composed of graphene-supported macrocycles, each hosting a single FeN4 center, where a single carbon monoxide molecule can adsorb. In this heme-like biomimetic model system, excitons are generated by visible laser light upon a spin transition associated with the layer 2D crystallinity, and are simultaneously detected via the carbon monoxide ligand stretching mode at room temperature and near-ambient pressure. The proposed mechanism is supported by the results of infrared and time-resolved pump-probe spectroscopies, and by ab initio theoretical methods, opening a path towards the handling of exciton dynamics on 2D biomimetic crystals.

2.
Phys Rev Lett ; 106(21): 216101, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699318

RESUMO

We report on a novel approach to determine the relationship between the corrugation and the thermal stability of epitaxial graphene grown on a strongly interacting substrate. According to our density functional theory calculations, the C single layer grown on Re(0001) is strongly corrugated, with a buckling of 1.6 Å, yielding a simulated C 1s core level spectrum which is in excellent agreement with the experimental one. We found that corrugation is closely knit with the thermal stability of the C network: C-C bond breaking is favored in the strongly buckled regions of the moiré cell, though it requires the presence of diffusing graphene layer vacancies.

3.
J Chem Phys ; 122(14): 144710, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15847556

RESUMO

Oxygen hydrogenation at 100 K by gas phase atomic hydrogen on Ni(110) has been studied under ultrahigh vacuum conditions by temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS). Formation of adsorbed water and hydroxyl species was observed and characterized. The coverage of the reaction products was monitored as a function of both temperature and initial oxygen precoverage. On the contrary, when high coverage oxygen overlayers were exposed to gas phase molecular hydrogen, no hydrogenation reaction took place. The results are compared to the inverse process, exposing the hydrogen covered surface to molecular oxygen. In this case, at 100 K, simple Langmuir-Hinshelwood modeling yields an initial sticking coefficient for oxygen adsorption equal to 0.26, considerably lower than for the clean surface. Moreover, formation of hydroxyl groups is found to be twice as fast as the final hydrogenation of OH groups to water. Assuming a preexponential factor of 10(13) s(-1), an activation barrier of 6.7 kcal/mol is obtained for OH formation, thus confirming the high hydrogenating activity of nickel with respect to other transition metals, for which higher activation energies are reported. However, oxygen is hardly removed by hydrogen on nickel: this is explained on the basis of the strong Ni-O chemical bond. The hydrogen residual coverage is well described including a contribution from the adsorption-induced H desorption process which takes place during the oxygen uptake and which is clearly visible from the TPD data.

4.
J Chem Phys ; 120(17): 8216-21, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15267741

RESUMO

The interaction of atomic hydrogen with clean and deuterium precovered Ru(1010) was studied by means of temperature-programmed desorption (TPD) spectroscopy. Compared to molecular hydrogen experiments, after exposure of the clean surface to gas-phase atomic hydrogen at 90 K, two additional peaks grow in the desorption spectra at 115 and 150 K. The surface saturation coverage, determined by equilibrium between abstraction and adsorption reactions, is 2.5 monolayers. Preadsorbed deuterium abstraction experiments with gas-phase atomic hydrogen show that a pure Eley-Rideal mechanism is not involved in the process, while a hot atom (HA) kinetics describes well the reaction. By least-squares fitting of the experimental data, a simplified HA kinetic model yields an abstraction cross section value of 0.5 +/- 0.2 angstroms2. The atomic hydrogen interaction with an oxygen precovered surface was also studied by means of both TPD and x-ray photoelectron spectroscopy: oxygen hydrogenation and water production take place already at very low temperature (90 K).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...