Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 52(3): 542-555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37934317

RESUMO

Progressive loss of proteoglycans (PGs) is the major biochemical change during intervertebral disc (IVD) degeneration. Adenosine triphosphate (ATP) as the primary energy source is not only critical for cell survival but also serves as a building block in PG synthesis. Extracellular ATP can mediate a variety of physiological functions and was shown to promote extracellular matrix (ECM) production in the IVD. Therefore, the objective of this study was to develop a 3D finite element model to predict extracellular ATP distribution in the IVD and evaluate the impact of degeneration on extracellular ATP distribution. A novel 3D finite element model of the IVD was developed by incorporating experimental measurements of ATP metabolism and ATP-PG binding kinetics into the mechano-electrochemical mixture theory. The new model was validated by experimental data of porcine IVD, and then used to analyze the extracellular distribution of ATP in human IVDs. Extracellular ATP was shown to bind specifically with PGs in IVD ECM. It was found that annulus fibrosus cells hydrolyze ATP faster than that of nucleus pulposus (NP) cells whereas NP cells exhibited a higher ATP release. The distribution of extracellular ATP in a porcine model was consistent with experimental data in our previous study. The predictions from a human IVD model showed a high accumulation of extracellular ATP in the NP region, whereas the extracellular ATP level was reduced with tissue degeneration. This study provides an understanding of extracellular ATP metabolism and its potential biological influences on the IVD via purinergic signaling.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Suínos , Humanos , Animais , Trifosfato de Adenosina/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Proteoglicanas , Matriz Extracelular/metabolismo
2.
Biomimetics (Basel) ; 7(4)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36278708

RESUMO

Damage caused by disease or trauma often leads to multi-tissue damage which is both painful and expensive for the patient. Despite the common occurrence of such injuries, reconstruction can be incredibly challenging and often may focus on a single tissue, which has been damaged to a greater extent, rather than the environment as a whole. Tissue engineering offers an approach to encourage repair, replacement, and regeneration using scaffolds, biomaterials and bioactive factors. However, there are many advantages to creating a combined scaffold fabrication method approach that incorporates the treatment and regeneration of multiple tissue types simultaneously. This review provides a guide to combining multiple tissue-engineered scaffold fabrication methods to span several tissue types concurrently. Briefly, a background in the healing and composition of typical tissues targeted in scaffold fabrication is provided. Then, common tissue-engineered scaffold fabrication methods are highlighted, specifically focusing on porosity, mechanical integrity, and practicality for clinical application. Finally, an overview of commonly used scaffold biomaterials and additives is provided, and current research in combining multiple scaffold fabrication techniques is discussed. Overall, this review will serve to bridge the critical gap in knowledge pertaining to combining different fabrication methods for tissue regeneration without disrupting structural integrity and biomaterial properties.

3.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616442

RESUMO

Hydrogels provide a promising method for the targeted delivery of protein drugs. Loading the protein drug into the hydrogel free volume can be challenging due to limited quantities of the drug (e.g., growth factor) and complex physicochemical properties of the hydrogel. Here, we investigated both passive and active loading of the heteropolysaccharide hydrogel pectin. Passive loading of glass phase pectin films was evaluated by contact angles and fractional thickness of the pectin films. Four pectin sources demonstrated mean contact angles of 88° with water and 122° with pleural fluid (p < 0.05). Slow kinetics and evaporative losses precluded passive loading. In contrast, active loading of the translucent pectin films was evaluated with the colorimetric tracer methylene blue. Active loading parameters were systematically varied and recorded at 500 points/s. The distribution of the tracer was evaluated by image morphometry. Active loading of the tracer into the pectin films required the optimization of probe velocity, compression force, and contact time. We conclude that active loading using pectin-specific conditions is required for the efficient embedding of low viscosity liquids into pectin hydrogels.

4.
Stem Cells Dev ; 30(10): 537-547, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33757298

RESUMO

Osteoarthritis (OA) is the most common type of arthritis, afflicting millions of people in the world. Elevation of inflammatory mediators and enzymatic matrix destruction is often associated with OA. Therefore, the objective of this study was to investigate the effects of conditioned medium from periodontal ligament-derived stem cells (PDLSCs) on inflammatory and catabolic gene expressions of chondrocytes, synoviocytes, and meniscus cells under in vitro inflammatory condition. Stem cells were isolated from human periodontal ligaments. Conditioned medium was collected and concentrated 20 × . Chondrocytes, synoviocytes, and meniscus cells were isolated from pig knees and divided into four experimental groups: serum-free media, serum-free media+interleukin-1ß (IL-1ß) (10 ng/mL), conditioned media (CM), and CM+IL-1ß. Protein content and extracellular vesicle (EV) miRNAs of CM were analyzed by liquid chromatography-tandem mass spectrometry and RNA sequencing, respectively. It was found that the IL-1ß treatment upregulated the expression of IL-1ß, tumor necrosis factor-α (TNF-α), MMP-13, and ADAMTS-4 genes in the three cell types, whereas PDLSC-conditioned medium prevented the upregulation of gene expression by IL-1ß in all three cell types. This study also found that there was consistency in anti-inflammatory effects of PDLSC CM across donors and cell subcultures, while PDLSCs released several anti-inflammatory factors and EV miRNAs at high levels. OA has been suggested as an inflammatory disease in which all intrasynovial tissues are involved. PDLSC-conditioned medium is a cocktail of trophic factors and EV miRNAs that could mediate different inflammatory processes in various tissues in the joint. Introducing PDLSC-conditioned medium to osteoarthritic joints could be a potential treatment to prevent OA progression by inhibiting inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Condrócitos/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Menisco/efeitos dos fármacos , Células-Tronco/metabolismo , Sinoviócitos/efeitos dos fármacos , Proteína ADAMTS4/genética , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultura Livres de Soro/farmacologia , Vesículas Extracelulares/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/farmacologia , Metaloproteinase 13 da Matriz/genética , Menisco/citologia , Menisco/metabolismo , MicroRNAs/genética , Ligamento Periodontal/citologia , Células-Tronco/citologia , Suínos , Sinoviócitos/citologia , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/genética
5.
Sci Rep ; 10(1): 8899, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483367

RESUMO

As the most common cause of low back pain, the cascade of intervertebral disc (IVD) degeneration is initiated by the disappearance of notochordal cells and progressive loss of proteoglycan (PG). Limited nutrient supply in the avascular disc environment restricts the production of ATP which is an essential energy source for cell survival and function such as PG biosynthesis. The objective of this study was to examine ATP level and PG production of porcine IVD cells under prolonged exposure to hypoxia with physiological glucose concentrations. The results showed notochordal NP and AF cells responded differently to changes of oxygen and glucose. Metabolic activities (including PG production) of IVD cells are restricted under the in-vivo nutrient conditions while NP notochordal cells are likely to be more vulnerable to reduced nutrition supply. Moreover, provision of energy, together or not with genetic regulation, may govern PG production in the IVD under restricted nutrient supply. Therefore, maintaining essential levels of nutrients may reduce the loss of notochordal cells and PG in the IVD. This study provides a new insight into the metabolism of IVD cells under nutrient deprivation and the information for developing treatment strategies for disc degeneration.


Assuntos
Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/citologia , Dor Lombar/metabolismo , Proteoglicanas/metabolismo , Idoso , Animais , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Disco Intervertebral/embriologia , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/complicações , Dor Lombar/etiologia , Pessoa de Meia-Idade , Modelos Animais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...