Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(4): 585-591, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211571

RESUMO

Glucolipotoxicity (GLT), in which elevated levels of glucose and fatty acids have deleterious effects on ß-cell biology, is thought to be one of the major contributors in progression of type 2 diabetes. In search of novel small molecules that protect ß-cells against GLT, we previously discovered KD025, an inhibitor of Rho-associated coiled-coil-containing kinase isoform 2 (ROCK2), as a GLT-protective compound in INS-1E cells and dissociated human islets. To further understand the mechanism of action of KD025, we found that pharmacological and genetic inhibition of ROCK2 was not responsible for the protective effects of KD025 against GLT. Instead, kinase profiling revealed that KD025 potently inhibits catalytic subunits of casein kinase 2 (CK2), a constitutively active serine/threonine kinase. We experimentally verified that the inhibition of one of the catalytic subunits of casein kinase 2, CK2A1, but not CK2A2, improved cell viability when challenged with GLT. We conclude that KD025 inhibits CK2 to protect ß-cells from GLT.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Caseína Quinase II/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia
2.
Cell Metab ; 35(7): 1242-1260.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37339634

RESUMO

Type 1 (T1D) or type 2 diabetes (T2D) are caused by a deficit of functional insulin-producing ß cells. Thus, the identification of ß cell trophic agents could allow the development of therapeutic strategies to counteract diabetes. The discovery of SerpinB1, an elastase inhibitor that promotes human ß cell growth, prompted us to hypothesize that pancreatic elastase (PE) regulates ß cell viability. Here, we report that PE is up-regulated in acinar cells and in islets from T2D patients, and negatively impacts ß cell viability. Using high-throughput screening assays, we identified telaprevir as a potent PE inhibitor that can increase human and rodent ß cell viability in vitro and in vivo and improve glucose tolerance in insulin-resistant mice. Phospho-antibody microarrays and single-cell RNA sequencing analysis identified PAR2 and mechano-signaling pathways as potential mediators of PE. Taken together, our work highlights PE as a potential regulator of acinar-ß cell crosstalk that acts to limit ß cell viability, leading to T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Células Acinares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Elastase Pancreática/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Comunicação Celular
3.
J Am Chem Soc ; 142(14): 6477-6482, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32175731

RESUMO

The loss of insulin-producing ß-cells is the central pathological event in type 1 and 2 diabetes, which has led to efforts to identify molecules to promote ß-cell proliferation, protection, and imaging. However, the lack of ß-cell specificity of these molecules jeopardizes their therapeutic potential. A general platform for selective release of small-molecule cargoes in ß-cells over other islet cells ex vivo or other cell-types in an organismal context will be immensely valuable in advancing diabetes research and therapeutic development. Here, we leverage the unusually high Zn(II) concentration in ß-cells to develop a Zn(II)-based prodrug system to selectively and tracelessly deliver bioactive small molecules and fluorophores to ß-cells. The Zn(II)-targeting mechanism enriches the inactive cargo in ß-cells as compared to other pancreatic cells; importantly, Zn(II)-mediated hydrolysis triggers cargo activation. This prodrug system, with modular components that allow for fine-tuning selectivity, should enable the safer and more effective targeting of ß-cells.


Assuntos
Linfócitos B/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Zinco/uso terapêutico , Catálise , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos
4.
Cell ; 177(4): 1067-1079.e19, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051099

RESUMO

The precise control of CRISPR-Cas9 activity is required for a number of genome engineering technologies. Here, we report a generalizable platform that provided the first synthetic small-molecule inhibitors of Streptococcus pyogenes Cas9 (SpCas9) that weigh <500 Da and are cell permeable, reversible, and stable under physiological conditions. We developed a suite of high-throughput assays for SpCas9 functions, including a primary screening assay for SpCas9 binding to the protospacer adjacent motif, and used these assays to screen a structurally diverse collection of natural-product-like small molecules to ultimately identify compounds that disrupt the SpCas9-DNA interaction. Using these synthetic anti-CRISPR small molecules, we demonstrated dose and temporal control of SpCas9 and catalytically impaired SpCas9 technologies, including transcription activation, and identified a pharmacophore for SpCas9 inhibition using structure-activity relationships. These studies establish a platform for rapidly identifying synthetic, miniature, cell-permeable, and reversible inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases.


Assuntos
Proteína 9 Associada à CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , DNA/metabolismo , Endonucleases/metabolismo , Edição de Genes/métodos , Genoma , Bibliotecas de Moléculas Pequenas , Streptococcus pyogenes/genética , Especificidade por Substrato
5.
Nat Chem Biol ; 15(6): 565-574, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086331

RESUMO

Enzymes that act on multiple substrates are common in biology but pose unique challenges as therapeutic targets. The metalloprotease insulin-degrading enzyme (IDE) modulates blood glucose levels by cleaving insulin, a hormone that promotes glucose clearance. However, IDE also degrades glucagon, a hormone that elevates glucose levels and opposes the effect of insulin. IDE inhibitors to treat diabetes, therefore, should prevent IDE-mediated insulin degradation, but not glucagon degradation, in contrast with traditional modes of enzyme inhibition. Using a high-throughput screen for non-active-site ligands, we discovered potent and highly specific small-molecule inhibitors that alter IDE's substrate selectivity. X-ray co-crystal structures, including an IDE-ligand-glucagon ternary complex, revealed substrate-dependent interactions that enable these inhibitors to potently block insulin binding while allowing glucagon cleavage, even at saturating inhibitor concentrations. These findings suggest a path for developing IDE-targeting therapeutics, and offer a blueprint for modulating other enzymes in a substrate-selective manner to unlock their therapeutic potential.


Assuntos
Inibidores Enzimáticos/farmacologia , Insulina/metabolismo , Metaloproteases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores Enzimáticos/química , Humanos , Metaloproteases/metabolismo , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Especificidade por Substrato
6.
Cell Chem Biol ; 26(5): 711-723.e14, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30880155

RESUMO

The transcription factor Max is a basic-helix-loop-helix leucine zipper (bHLHLZ) protein that forms homodimers or interacts with other bHLHLZ proteins, including Myc and Mxd proteins. Among this dynamic network of interactions, the Myc/Max heterodimer has crucial roles in regulating normal cellular processes, but its transcriptional activity is deregulated in a majority of human cancers. Despite this significance, the arsenal of high-quality chemical probes to interrogate these proteins remains limited. We used small molecule microarrays to identify compounds that bind Max in a mechanistically unbiased manner. We discovered the asymmetric polycyclic lactam, KI-MS2-008, which stabilizes the Max homodimer while reducing Myc protein and Myc-regulated transcript levels. KI-MS2-008 also decreases viable cancer cell growth in a Myc-dependent manner and suppresses tumor growth in vivo. This approach demonstrates the feasibility of modulating Max with small molecules and supports altering Max dimerization as an alternative approach to targeting Myc.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lactamas/farmacologia , Compostos Policíclicos/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Dimerização , Modelos Animais de Doenças , Humanos , Lactamas/síntese química , Lactamas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/tratamento farmacológico , Compostos Policíclicos/síntese química , Compostos Policíclicos/uso terapêutico , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Raios Ultravioleta
7.
Proc Natl Acad Sci U S A ; 114(20): E4030-E4039, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461505

RESUMO

Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic "Philadelphia-like" ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are "relapse driving." We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2pos, Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT "hypersignaling" may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL.


Assuntos
Síndrome de Down/complicações , Janus Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Fatores de Transcrição STAT/metabolismo , Adolescente , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Citocinas/genética , Recidiva , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Adulto Jovem
8.
Methods Mol Biol ; 1483: 339-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27645744

RESUMO

CE applications to charged polysaccharides are briefly reported. A simple procedure is presented to determine the esterification degree of a hyaluronan derivative. In this case the degree of substitution was as low as 14 %.The molecular weight distribution of mannuronic oligosaccharides mixture produced by hydrolysis of native polymannuronic is readily calculated from peak area of the species resolved by CE on the basis of a specific degree of polymerization.The influence of the applied electric field strength on the free solution mobility of hyaluronan samples is briefly addressed for molar masses of the order of 10(5) and 10(6) g/mol. The data are compared with the results obtained for a 50 % galactose substituted HA.Mobility data obtained as a function of buffer pH for a native HA sample as well as for two galactose-amide HA derivatives, having slightly different degrees of substitution, are presented and discussed in terms of the polymer charge density parameters ξ.In most cases, more questions than answers arise from the application of CE to charged polysaccharides. However, perspectives are disclosed for a further understanding of the reliability of CE applied for the structural elucidation of such macromolecules.


Assuntos
Carboidratos da Dieta/isolamento & purificação , Eletroforese Capilar/métodos , Ácido Hialurônico/isolamento & purificação , Polissacarídeos/isolamento & purificação , Esterificação , Ácido Hialurônico/química , Peso Molecular , Polissacarídeos/química
9.
Cell Syst ; 3(4): 346-360.e4, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27667365

RESUMO

Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.


Assuntos
Transcriptoma , Animais , Diferenciação Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Ilhotas Pancreáticas , Camundongos , Pâncreas , Pâncreas Exócrino , Análise de Célula Única , Fatores de Transcrição
10.
Stem Cells Transl Med ; 5(11): 1525-1537, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27405779

RESUMO

: ß-Cell replacement therapy represents the most promising approach to restore ß-cell mass and glucose homeostasis in patients with type 1 diabetes. Safety and ethical issues associated with pluripotent stem cells stimulated the search for adult progenitor cells with endocrine differentiation capacities. We have already described a model for expansion and differentiation of human pancreatic duct-derived cells (HDDCs) into insulin-producing cells. Here we show an innovative and robust in vitro system for large-scale production of ß-like cells from HDDCs using a nonintegrative RNA-based reprogramming technique. Synthetic modified RNAs for pancreatic transcription factors (pancreatic duodenal homeobox 1, neurogenin3, and V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A [MAFA]) were manufactured and daily transfected in HDDCs without strongly affecting immune response and cell viability. MAFA overexpression was efficient and sufficient to induce ß-cell differentiation of HDDCs, which acquired a broad repertoire of mature ß-cell markers while downregulating characteristic epithelial-mesenchymal transition markers. Within 7 days, MAFA-reprogrammed HDDC populations contained 37% insulin-positive cells and a proportion of endocrine cells expressing somatostatin and pancreatic polypeptide. Ultrastructure analysis of differentiated HDDCs showed both immature and mature insulin granules with light-backscattering properties. Furthermore, in vitro HDDC-derived ß cells (called ß-HDDCs) secreted human insulin and C-peptide in response to glucose, KCl, 3-isobutyl-1-methylxanthine, and tolbutamide stimulation. Transplantation of ß-HDDCs into diabetic SCID-beige mice confirmed their functional glucose-responsive insulin secretion and their capacity to mitigate hyperglycemia. Our data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new ß cells with potential to reverse diabetes. SIGNIFICANCE: ß-Cell replacement therapy represents the most promising approach to restore glucose homeostasis in patients with type 1 diabetes. This study shows an innovative and robust in vitro system for large-scale production of ß-like cells from human pancreatic duct-derived cells (HDDCs) using a nonintegrative RNA-based reprogramming technique. V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A overexpression was efficient and sufficient to induce ß-cell differentiation and insulin secretion from HDDCs in response to glucose stimulation, allowing the cells to mitigate hyperglycemia in diabetic SCID-beige mice. The data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new ß cells with the potential to reverse diabetes.

11.
ACS Chem Biol ; 11(7): 1844-51, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27064299

RESUMO

Unbiased binding assays involving small-molecule microarrays were used to identify compounds that display unique patterns of selectivity among members of the zinc-dependent histone deacetylase family of enzymes. A novel, hydroxyquinoline-containing compound, BRD4354, was shown to preferentially inhibit activity of HDAC5 and HDAC9 in vitro. Inhibition of deacetylase activity appears to be time-dependent and reversible. Mechanistic studies suggest that the compound undergoes zinc-catalyzed decomposition to an ortho-quinone methide, which covalently modifies nucleophilic cysteines within the proteins. The covalent nature of the compound-enzyme interaction has been demonstrated in experiments with biotinylated probe compound and with electrospray ionization-mass spectrometry.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Animais , Linhagem Celular , Humanos
12.
Diabetes ; 65(6): 1660-71, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26953159

RESUMO

Restoring functional ß-cell mass is an important therapeutic goal for both type 1 and type 2 diabetes (1). While proliferation of existing ß-cells is the primary means of ß-cell replacement in rodents (2), it is unclear whether a similar principle applies to humans, as human ß-cells are remarkably resistant to stimulation of division (3,4). Here, we show that 5-iodotubercidin (5-IT), an annotated adenosine kinase inhibitor previously reported to increase proliferation in rodent and porcine islets (5), strongly and selectively increases human ß-cell proliferation in vitro and in vivo. Remarkably, 5-IT also increased glucose-dependent insulin secretion after prolonged treatment. Kinome profiling revealed 5-IT to be a potent and selective inhibitor of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) and cell division cycle-like kinase families. Induction of ß-cell proliferation by either 5-IT or harmine, another natural product DYRK1A inhibitor, was suppressed by coincubation with the calcineurin inhibitor FK506, suggesting involvement of DYRK1A and nuclear factor of activated T cells signaling. Gene expression profiling in whole islets treated with 5-IT revealed induction of proliferation- and cell cycle-related genes, suggesting that true proliferation is induced by 5-IT. Furthermore, 5-IT promotes ß-cell proliferation in human islets grafted under the kidney capsule of NOD-scid IL2Rg(null) mice. These results point to inhibition of DYRK1A as a therapeutic strategy to increase human ß-cell proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Tubercidina/análogos & derivados , Animais , Proliferação de Células/genética , Perfilação da Expressão Gênica , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Fosforilação/efeitos dos fármacos , Tubercidina/farmacologia , Quinases Dyrk
13.
ACS Chem Biol ; 11(2): 363-74, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26640968

RESUMO

Modulation of histone deacetylase (HDAC) activity has been implicated as a potential therapeutic strategy for multiple diseases. However, it has been difficult to dissect the role of individual HDACs due to a lack of selective small-molecule inhibitors. Here, we report the synthesis of a series of highly potent and isoform-selective class I HDAC inhibitors, rationally designed by exploiting minimal structural changes to the clinically experienced HDAC inhibitor CI-994. We used this toolkit of isochemogenic or chemically matched inhibitors to probe the role of class I HDACs in ß-cell pathobiology and demonstrate for the first time that selective inhibition of an individual HDAC isoform retains beneficial biological activity and mitigates mechanism-based toxicities. The highly selective HDAC3 inhibitor BRD3308 suppressed pancreatic ß-cell apoptosis induced by inflammatory cytokines, as expected, or now glucolipotoxic stress, and increased functional insulin release. In addition, BRD3308 had no effect on human megakaryocyte differentiation, while inhibitors of HDAC1 and 2 were toxic. Our findings demonstrate that the selective inhibition of HDAC3 represents a potential path forward as a therapy to protect pancreatic ß-cells from inflammatory cytokines and nutrient overload in diabetes.


Assuntos
Citoproteção/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacocinética , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratos
14.
J Am Chem Soc ; 137(24): 7929-34, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26042473

RESUMO

Phenotypic cell-based screening is a powerful approach to small-molecule discovery, but a major challenge of this strategy lies in determining the intracellular target and mechanism of action (MoA) for validated hits. Here, we show that the small-molecule BRD0476, a novel suppressor of pancreatic ß-cell apoptosis, inhibits interferon-gamma (IFN-γ)-induced Janus kinase 2 (JAK2) and signal transducer and activation of transcription 1 (STAT1) signaling to promote ß-cell survival. However, unlike common JAK-STAT pathway inhibitors, BRD0476 inhibits JAK-STAT signaling without suppressing the kinase activity of any JAK. Rather, we identified the deubiquitinase ubiquitin-specific peptidase 9X (USP9X) as an intracellular target, using a quantitative proteomic analysis in rat ß cells. RNAi-mediated and CRISPR/Cas9 knockdown mimicked the effects of BRD0476, and reverse chemical genetics using a known inhibitor of USP9X blocked JAK-STAT signaling without suppressing JAK activity. Site-directed mutagenesis of a putative ubiquitination site on JAK2 mitigated BRD0476 activity, suggesting a competition between phosphorylation and ubiquitination to explain small-molecule MoA. These results demonstrate that phenotypic screening, followed by comprehensive MoA efforts, can provide novel mechanistic insights into ostensibly well-understood cell signaling pathways. Furthermore, these results uncover USP9X as a potential target for regulating JAK2 activity in cellular inflammation.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Interferon gama/imunologia , Janus Quinase 2/imunologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Fator de Transcrição STAT1/imunologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/imunologia , Fosforilação/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina Tiolesterase/imunologia , Ubiquitinação/efeitos dos fármacos
15.
Cell Rep ; 10(5): 755-770, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660025

RESUMO

Novel therapeutic approaches are urgently required for multiple myeloma (MM). We used a phenotypic screening approach using co-cultures of MM cells with bone marrow stromal cells to identify compounds that overcome stromal resistance. One such compound, BRD9876, displayed selectivity over normal hematopoietic progenitors and was discovered to be an unusual ATP non-competitive kinesin-5 (Eg5) inhibitor. A novel mutation caused resistance, suggesting a binding site distinct from known Eg5 inhibitors, and BRD9876 inhibited only microtubule-bound Eg5. Eg5 phosphorylation, which increases microtubule binding, uniquely enhanced BRD9876 activity. MM cells have greater phosphorylated Eg5 than hematopoietic cells, consistent with increased vulnerability specifically to BRD9876's mode of action. Thus, differences in Eg5-microtubule binding between malignant and normal blood cells may be exploited to treat multiple myeloma. Additional steps are required for further therapeutic development, but our results indicate that unbiased chemical biology approaches can identify therapeutic strategies unanticipated by prior knowledge of protein targets.

16.
Cell Metab ; 21(1): 126-37, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25565210

RESUMO

Defects in insulin secretion play a central role in the pathogenesis of type 2 diabetes, yet the mechanisms driving beta-cell dysfunction remain poorly understood, and therapies to preserve glucose-dependent insulin release are inadequate. We report a luminescent insulin secretion assay that enables large-scale investigations of beta-cell function, created by inserting Gaussia luciferase into the C-peptide portion of proinsulin. Beta-cell lines expressing this construct cosecrete luciferase and insulin in close correlation, under both standard conditions or when stressed by cytokines, fatty acids, or ER toxins. We adapted the reporter for high-throughput assays and performed a 1,600-compound pilot screen, which identified several classes of drugs inhibiting secretion, as well as glucose-potentiated secretagogues that were confirmed to have activity in primary human islets. Requiring 40-fold less time and expense than the traditional ELISA, this assay may accelerate the identification of pathways governing insulin secretion and compounds that safely augment beta-cell function in diabetes.


Assuntos
Ácidos Graxos/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células Cultivadas , Citocinas/farmacologia , Ensaio de Imunoadsorção Enzimática , Genes Reporter , Glucose/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Luciferases/genética , Luciferases/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Tapsigargina/toxicidade
17.
Nat Rev Drug Discov ; 13(4): 278-89, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24525781

RESUMO

Diabetes is a leading cause of morbidity and mortality worldwide, and predicted to affect over 500 million people by 2030. However, this growing burden of disease has not been met with a comparable expansion in therapeutic options. The appreciation of the pancreatic ß-cell as a central player in the pathogenesis of both type 1 and type 2 diabetes has renewed focus on ways to improve glucose homeostasis by preserving, expanding and improving the function of this key cell type. Here, we provide an overview of the latest developments in this field, with an emphasis on the most promising strategies identified to date for treating diabetes by targeting the ß-cell.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Desenho de Fármacos , Humanos , Células Secretoras de Insulina/metabolismo , Terapia de Alvo Molecular
18.
Int J Endocrinol ; 2012: 925143, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22811709

RESUMO

Pancreatic beta-cell regeneration, for example, by inducing proliferation, remains an important goal in developing effective treatments for diabetes. However, beta cells have mainly been considered quiescent. This "static" view has recently been challenged by observations of relevant physiological conditions in which metabolic stress is compensated by an increase in beta-cell mass. Understanding the molecular mechanisms underlining these process could open the possibility of developing novel small molecules to increase beta-cell mass. Several cellular cell-cycle and signaling proteins provide attractive targets for high throughput screening, and recent advances in cell culture have enabled phenotypic screening for small molecule-induced beta-cell proliferation. We present here an overview of the current trends involving small-molecule approaches to induce beta-cell regeneration by proliferation.

19.
PLoS One ; 7(1): e28808, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242153

RESUMO

BACKGROUND: Expression of insulin in terminally differentiated non-beta cell types in the pancreas could be important to treating type-1 diabetes. Previous findings led us to hypothesize involvement of kinase inhibition in induction of insulin expression in pancreatic alpha cells. METHODOLOGY/PRINCIPAL FINDINGS: Alpha (αTC1.6) cells and human islets were treated with GW8510 and other small-molecule inhibitors for up to 5 days. Alpha cells were assessed for gene- and protein-expression levels, cell-cycle status, promoter occupancy status by chromatin immunoprecipitation (ChIP), and p53-dependent transcriptional activity. GW8510, a putative CDK2 inhibitor, up-regulated insulin expression in mouse alpha cells and enhanced insulin secretion in dissociated human islets. Gene-expression profiling and gene-set enrichment analysis of GW8510-treated alpha cells suggested up-regulation of the p53 pathway. Accordingly, the compound increased p53 transcriptional activity and expression levels of p53 transcriptional targets. A predicted p53 response element in the promoter region of the mouse Ins2 gene was verified by chromatin immunoprecipitation (ChIP). Further, inhibition of Jun N-terminal kinase (JNK) and p38 kinase activities suppressed insulin induction by GW8510. CONCLUSIONS/SIGNIFICANCE: The induction of Ins2 by GW8510 occurred through p53 in a JNK- and p38-dependent manner. These results implicate p53 activity in modulation of Ins2 expression levels in pancreatic alpha cells, and point to a potential approach toward using small molecules to generate insulin in an alternative cell type.


Assuntos
Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Indóis/farmacologia , Insulina/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Células Secretoras de Glucagon/citologia , Humanos , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Elementos de Resposta/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ativação Transcricional/genética
20.
J Biomol Screen ; 17(4): 509-18, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22156222

RESUMO

A small-molecule inducer of beta-cell proliferation in human islets represents a potential regeneration strategy for treating type 1 diabetes. However, the lack of suitable human beta cell lines makes such a discovery a challenge. Here, we adapted an islet cell culture system to high-throughput screening to identify such small molecules. We prepared microtiter plates containing extracellular matrix from a human bladder carcinoma cell line. Dissociated human islets were seeded onto these plates, cultured for up to 7 days, and assessed for proliferation by simultaneous Ki67 and C-peptide immunofluorescence. Importantly, this environment preserved beta-cell physiological function, as measured by glucose-stimulated insulin secretion. Adenoviral overexpression of cdk-6 and cyclin D(1), known inducers of human beta cell proliferation, was used as a positive control in our assay. This induction was inhibited by cotreatment with rapamycin, an immunosuppressant often used in islet transplantation. We then performed a pilot screen of 1280 compounds, observing some phenotypic effects on cells. This high-throughput human islet cell culture method can be used to assess various aspects of beta-cell biology on a relatively large number of compounds.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Ilhotas Pancreáticas/citologia , Cultura Primária de Células/métodos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...