Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 425, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172210

RESUMO

Triple-negative breast cancer (TNBC) is a difficult-to-treat, aggressive cancer type. TNBC is often associated with the cellular program of epithelial-mesenchymal transition (EMT) that confers drug resistance and metastasis. EMT and reverse mesenchymal-epithelial transition (MET) programs are regulated by several signaling pathways which converge on a group of transcription factors, EMT- TFs. Therapy approaches could rely on the EMT reversal to sensitise mesenchymal tumours to compounds effective against epithelial cancers. Here, we show that the antimalarial ROS-generating compound artesunate (ART) exhibits higher cytotoxicity in epithelial than mesenchymal breast cancer cell lines. Ectopic expression of EMT-TF ZEB1 in epithelial or ZEB1 depletion in mesenchymal cells, respectively, reduced or increased ART-generated ROS levels, DNA damage and apoptotic cell death. In epithelial cells, ZEB1 enhanced expression of superoxide dismutase 2 (SOD2) and glutathione peroxidase 8 (GPX8) implicated in ROS scavenging. Although SOD2 or GPX8 levels were unaffected in mesenchymal cells in response to ZEB1 depletion, stable ZEB1 knockdown enhanced total ROS. Receptor tyrosine kinase AXL maintains a mesenchymal phenotype and is overexpressed in TNBC. The clinically-relevant AXL inhibitor TP-0903 induced MET and synergised with ART to generate ROS, DNA damage and apoptosis in TNBC cells. TP-0903 reduced the expression of GPX8 and SOD2. Thus, TP-0903 and ZEB1 knockdown sensitised TNBC cells to ART, likely via different pathways. Synergistic interactions between TP-0903 and ART indicate that combination approaches involving these compounds can have therapeutic prospects for TNBC treatment.


Assuntos
Antimaláricos , Neoplasias de Mama Triplo Negativas , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Espécies Reativas de Oxigênio/farmacologia , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Peroxidases/farmacologia
2.
Future Sci OA ; 8(2): FSO775, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35070357

RESUMO

AIM: To determine the antiproliferative and cytotoxic activities of Geranium and Erodium species against human cancer and noncancer cell lines, respectively. METHODS: Twenty-one species of Geranium and Erodium were extracted and screened against cancerous and noncancerous human cell lines. RESULTS: In a dose-response manner, G. glaberrimum, G. asphodeloides, E. brandianum and E. leucanthum were able, with variable potency, to inhibit cellular proliferation. Except for E. brandianum, all extracts induced cellular autophagy in tumor cells with similar levels to that of rapamycin; but, only E. brandianum induced cellular apoptosis, likely through Bcl2 and BAX protein expressions. DISCUSSION: This is the first study to report the potential antiproliferative effects of ethanol extracts of several Geraniaceae species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...