Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37760704

RESUMO

In the present study, the antimicrobial peptide nisin was successfully conjugated onto the surface of sulfonated polyetheretherketone (SPEEK), which was decorated with graphene oxide (GO) to investigate its biofilm resistance and antibacterial properties. The PEEK was activated with sulfuric acid, resulting in a porous structure. The GO deposition fully covered the porous SPEEK specimen. The nisin conjugation was accomplished using the crosslinker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) through a dip-coating method. The surface micrographs of the SPEEK-GO-nisin sample indicated that nisin formed discrete islets on the flat GO surface, allowing both the GO and nisin to perform a bactericidal effect. The developed materials were tested for bactericidal efficacy against Staphylococcus aureus (S. aureus). The SPEEK-GO-nisin sample had the highest antibacterial activity with an inhibition zone diameter of 27 mm, which was larger than those of the SPEEK-nisin (19 mm) and SPEEK-GO (10 mm) samples. Conversely, no inhibitory zone was observed for the PEEK and SPEEK samples. The surface micrographs of the bacteria-loaded SPEEK-GO-nisin sample demonstrated no bacterial adhesion and no biofilm formation. The SPEEK-nisin and SPEEK-GO samples showed some bacterial attachment, whereas the pure PEEK and SPEEK samples had abundant bacterial colonies and thick biofilm formation. These results confirmed the good biofilm resistance and antibacterial efficacy of the SPEEK-GO-nisin sample, which is promising for implantable orthopedic applications.

2.
Materials (Basel) ; 14(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805683

RESUMO

The objectives of this work aim to investigate the interaction and cytotoxicity between nanometric graphene oxide (GO) and nasopharyngeal carcinoma cells (NPC-BM1), and possible application in photon therapy. GO nanosheets were obtained in the size range of 100-200 nm, with a negative surface charge. This nanometric GO exhibited a limited (<10%) cytotoxicity effect and no significant dimensional change on NPC-BM1 cells in the tested GO concentration range (0.1-10 µg·mL-1). However, the secondary protein structure was modified in the GO-treated NPC-BM1 cells, as determined through synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM) mapping. To further study the cellular response of GO-treated NPC-BM1 cancer cells at low GO concentration (0.1 µg·mL-1), photon radiation was applied with increasing doses, ranging from 2 to 8 Gy. The low radiation energy (<5 Gy) did not cause significant cell mortality (5-7%). Increasing the radiation energy to 6-8 Gy accelerated cell apoptosis rate, especially in the GO-treated NPC-BM1 cells (27%). This necrosis may be due to GO-induced conformational changes in protein and DNA/RNA, resulting in cell vulnerability under photon radiation. The findings of the present work demonstrate the potential biological applicability of nanometric GO in different areas, such as targeted drug delivery, cellular imaging, and radiotherapy, etc.

3.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008782

RESUMO

In the present work, the antimicrobial peptide (AMP) of GL13K was successfully coated onto a polyetheretherketone (PEEK) substrate to investigate its antibacterial activities against Staphylococcus aureus (S. aureus) bacteria. To improve the coating efficiency, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was mixed with a GL13K solution and coated on the PEEK surface for comparison. Both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) data confirmed 30% greater peptide coating on PEEK/GL13K-EDC than PEEK without EDC treatment. The GL13K graft levels are depicted in the micrograms per square centimeter range. The PEEK/GL13K-EDC sample showed a smoother and lower roughness (Rq of 0.530 µm) than the PEEK/GL13K (0.634 µm) and PEEK (0.697 µm) samples. The surface of the PEEK/GL13K-EDC was more hydrophilic (with a water contact angle of 24°) than the PEEK/GL13K (40°) and pure PEEK (89°) samples. The pure PEEK disc did not exhibit any inhibition zone against S. aureus. After peptide coating, the samples demonstrated significant zones of inhibition: 28 mm and 25 mm for the PEEK/GL13K-EDC and PEEK/GL13K samples, respectively. The bacteria-challenged PEEK sample showed numerous bacteria clusters, whereas PEEK/GL13K contained a little bacteria and PEEK/GL13K-EDC had no bacterial attachment. The results confirm that the GL13K peptide coating was able to induce antibacterial and biofilm-inhibitory effects. To the best of our knowledge, this is the first report of successful GL13K peptide grafting on a PEEK substrate via EDC coupling. The present work illustrates a facile and promising coating technique for a polymeric surface to provide bactericidal activity and biofilm resistance to medical implantable devices.


Assuntos
Antibacterianos/farmacologia , Benzofenonas/química , Etildimetilaminopropil Carbodi-Imida/química , Oligopeptídeos/farmacologia , Polímeros/química , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Espectrometria por Raios X , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Difração de Raios X
4.
Nanomaterials (Basel) ; 8(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29538336

RESUMO

In this work, silver nanoparticles (Ag NPs) were decorated on thiol (-SH) grafted graphene oxide (GO) layers to investigate the antibacterial activities in Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa). The quasi-spherical, nano-sized Ag NPs were attached to the GO surface layers, as confirmed by using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), respectively. The average size of GO-Ag nanocomposites was significantly reduced (327 nm) from those of pristine GO (962 nm) while the average size of loaded Ag NPs was significantly smaller than the Ag NPs without GO. Various concentrations of AgNO3 solutions (0.1, 0.2, and 0.25 M) were loaded into GO nanosheets and resulted in the Ag contents of 31, 43, and 65%, respectively, with 1-2 nm sizes of Ag NPs anchored on the GO layers. These GO-Ag samples have negative surface charges but the GO-Ag 0.2 M sample (43% Ag) demonstrated the highest antibacterial efficiency. At 10 ppm load of GO-Ag suspension, only a GO-Ag 0.2 M sample yielded slight bacterial inhibition (5.79-7.82%). As the GO-Ag content was doubled to 20 ppm, the GO-Ag 0.2 M composite exhibited ~49% inhibition. When the GO-Ag 0.2 M composite level was raised to 100 ppm, almost 100% inhibition efficiencies were found on both Staphylococcus aureus (S.A.) and Pseudomonas aeruginosa (P.A.), which were significantly higher than using pristine GO (27% and 33% for S.A. and P.A.). The combined effect of GO and Ag nanoparticles demonstrate efficient antibacterial activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...