Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(28): 30281-30293, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035966

RESUMO

Polydimethylsiloxane (PDMS) is extensively used to fabricate biocompatible microfluidic systems due to its favorable properties for cell culture. Recently, ultraviolet-curable PDMS (UV-PDMS) has shown potential for enhancing manufacturing processes and final optical quality while retaining the benefits of traditional thermally cured PDMS. This study investigates the biocompatibility of UV-PDMS under static and flow conditions using human umbilical vein endothelial cells (HUVECs). UV-PDMS samples were treated with oxygen plasma and boiling deionized water to assess potential improvements in cell behavior compared with untreated samples. We evaluated HUVECs adhesion, growth, morphology, and viability in static cultures and microchannels fabricated with UV-PDMS to test their resistance to flow conditions. Our results confirmed the biocompatibility of UV-PDMS for HUVECs culture. Moreover, plasma-oxygen-treated UV-PDMS substrates exhibited superior cell growth and adhesion compared to untreated UV-PDMS. This enhancement enabled HUVECs to maintain their morphology and viability under flow conditions in UV-PDMS microchannels. Additionally, UV-PDMS demonstrated improved optical quality and more efficient handling and processing, characterized by shorter curing times and simplified procedures utilizing UV light compared to traditional PDMS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...