Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pilot Feasibility Stud ; 10(1): 89, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877595

RESUMO

BACKGROUND: Several changes occur in the central nervous system with increasing age that contribute toward declines in mobility. Neurorehabilitation has proven effective in improving motor function though achieving sustained behavioral and neuroplastic adaptations is more challenging. While effective, rehabilitation usually follows adverse health outcomes, such as injurious falls. This reactive intervention approach may be less beneficial than prevention interventions. Therefore, we propose the development of a prehabilitation intervention approach to address mobility problems before they lead to adverse health outcomes. This protocol article describes a pilot study to examine the feasibility and acceptability of a home-based, self-delivered prehabilitation intervention that combines motor imagery (mentally rehearsing motor actions without physical movement) and neuromodulation (transcranial direct current stimulation, tDCS; to the frontal lobes). A secondary objective is to examine preliminary evidence of improved mobility following the intervention. METHODS: This pilot study has a double-blind randomized controlled design. Thirty-four participants aged 70-95 who self-report having experienced a fall within the prior 12 months or have a fear of falling will be recruited. Participants will be randomly assigned to either an active or sham tDCS group for the combined tDCS and motor imagery intervention. The intervention will include six 40-min sessions delivered every other day. Participants will simultaneously practice the motor imagery tasks while receiving tDCS. Those individuals assigned to the active group will receive 20 min of 2.0-mA direct current to frontal lobes, while those in the sham group will receive 30 s of stimulation to the frontal lobes. The motor imagery practice includes six instructional videos presenting different mobility tasks related to activities of daily living. Prior to and following the intervention, participants will undergo laboratory-based mobility and cognitive assessments, questionnaires, and free-living activity monitoring. DISCUSSION: Previous studies report that home-based, self-delivered tDCS is safe and feasible for various populations, including neurotypical older adults. Additionally, research indicates that motor imagery practice can augment motor learning and performance. By assessing the feasibility (specifically, screening rate (per month), recruitment rate (per month), randomization (screen eligible who enroll), retention rate, and compliance (percent of completed intervention sessions)) and acceptability of the home-based motor imagery and tDCS intervention, this study aims to provide preliminary data for planning larger studies. TRIAL REGISTRATION: This study is registered on ClinicalTrials.gov (NCT05583578). Registered October 13, 2022. https://www. CLINICALTRIALS: gov/study/NCT05583578.

2.
Nat Commun ; 13(1): 3372, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690592

RESUMO

Glycogen is the major glucose reserve in eukaryotes, and defects in glycogen metabolism and structure lead to disease. Glycogenesis involves interaction of glycogenin (GN) with glycogen synthase (GS), where GS is activated by glucose-6-phosphate (G6P) and inactivated by phosphorylation. We describe the 2.6 Å resolution cryo-EM structure of phosphorylated human GS revealing an autoinhibited GS tetramer flanked by two GN dimers. Phosphorylated N- and C-termini from two GS protomers converge near the G6P-binding pocket and buttress against GS regulatory helices. This keeps GS in an inactive conformation mediated by phospho-Ser641 interactions with a composite "arginine cradle". Structure-guided mutagenesis perturbing interactions with phosphorylated tails led to increased basal/unstimulated GS activity. We propose that multivalent phosphorylation supports GS autoinhibition through interactions from a dynamic "spike" region, allowing a tuneable rheostat for regulating GS activity. This work therefore provides insights into glycogen synthesis regulation and facilitates studies of glycogen-related diseases.


Assuntos
Glucosiltransferases , Glicogênio Sintase , Glucose-6-Fosfato/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Humanos , Músculo Esquelético/metabolismo , Fosforilação
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1465-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816114

RESUMO

Bloom's syndrome is an autosomal recessive genome-instability disorder associated with a predisposition to cancer, premature aging and developmental abnormalities. It is caused by mutations that inactivate the DNA helicase activity of the BLM protein or nullify protein expression. The BLM helicase has been implicated in the alternative lengthening of telomeres (ALT) pathway, which is essential for the limitless replication of some cancer cells. This pathway is used by 10-15% of cancers, where inhibitors of BLM are expected to facilitate telomere shortening, leading to apoptosis or senescence. Here, the crystal structure of the human BLM helicase in complex with ADP and a 3'-overhang DNA duplex is reported. In addition to the helicase core, the BLM construct used for crystallization (residues 640-1298) includes the RecQ C-terminal (RQC) and the helicase and ribonuclease D C-terminal (HRDC) domains. Analysis of the structure provides detailed information on the interactions of the protein with DNA and helps to explain the mechanism coupling ATP hydrolysis and DNA unwinding. In addition, mapping of the missense mutations onto the structure provides insights into the molecular basis of Bloom's syndrome.


Assuntos
Difosfato de Adenosina/metabolismo , RecQ Helicases/química , RecQ Helicases/metabolismo , Síndrome de Bloom/genética , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidrólise , Modelos Moleculares , Mutação , Ácidos Nucleicos Heteroduplexes , Conformação Proteica , RecQ Helicases/genética
4.
Protein Pept Lett ; 20(9): 1002-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22973843

RESUMO

MurG is an essential bacterial glycosyltransferase enzyme in Pseudomonas aeruginosa performing one of the key membrane steps of peptidoglycan synthesis catalyzing the transfer of N-acetyl glucosamine (GlcNAc) from its donor substrate, UDP-GlcNAc, to the acceptor substrate Lipid I. We have solved the crystal structure of the complex between Pseudomonas aeruginosa MurG and UDP-GlcNAc and compared it with the previously solved complex from E. coli. The structure reveals a large-scale conformational change in the relative orientations of the N- and C-terminal domains, which has the effect of widening the cofactor binding site and displacing the UDP-GlcNAc donor. These results suggest new opportunities to design potent inhibitors of peptidoglycan biosynthesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , N-Acetilglucosaminiltransferases/química , Uridina Difosfato N-Acetilglicosamina/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalização , Cristalografia por Raios X , Fluorometria , Modelos Moleculares , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Uridina Difosfato N-Acetilglicosamina/metabolismo
5.
J Mol Biol ; 354(5): 1013-20, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16289117

RESUMO

Transforming growth factor-beta (TGF-beta)-activated kinase 1 (TAK1) is a member of the MAPKKK family of protein kinases, and is involved in intracellular signalling pathways stimulated by transforming growth factor beta, interleukin-1 and tumour necrosis factor-alpha. TAK1 is known to rely upon an additional protein, TAK1-binding protein 1 (TAB1), for complete activation. However, the molecular basis for this activation has yet to be elucidated. We have solved the crystal structure of a novel TAK1 chimeric protein and these data give insight into how TAK1 is activated by TAB1. Our results reveal a novel binding pocket on the TAK1 kinase domain whose shape complements that of a unique alpha-helix in the TAK1 binding domain of TAB1, providing the basis for an intimate hydrophobic association between the protein activator and its target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Adenosina/metabolismo , Sequência de Aminoácidos , Baculoviridae/genética , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
J Biol Chem ; 279(18): 18727-32, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-14766749

RESUMO

Interleukin-2 tyrosine kinase, Itk, is an important member of the Tec family of non-receptor tyrosine kinases that play a central role in signaling through antigen receptors such as the T-cell receptor, B-cell receptor, and Fcepsilon. Selective inhibition of Itk may be an important way of modulating many diseases involving heightened or inappropriate activation of the immune system. In addition to an unliganded nonphophorylated Itk catalytic kinase domain, we determined the crystal structures of the phosphorylated and nonphosphorylated kinase domain bound to staurosporine, a potent broad-spectrum kinase inhibitor. These structures are useful for the design of novel, highly potent and selective Itk inhibitors and provide insight into the influence of inhibitor binding and phosphorylation on the conformation of Itk.


Assuntos
Cristalografia por Raios X , Proteínas Tirosina Quinases/química , Estaurosporina/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Desenho de Fármacos , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Tirosina Quinases/antagonistas & inibidores
7.
J Biol Chem ; 277(39): 36100-8, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12138093

RESUMO

The TIM10 complex is localized in the mitochondrial intermembrane space and mediates insertion of hydrophobic proteins at the inner membrane. We have characterized TIM10 assembly and analyzed the structural properties of its subunits, Tim9 and Tim10. Both proteins are alpha-helical with a protease-resistant central domain, and each self-associates to form mainly dimers and trimers in solution. Tim9 and Tim10 bound to one another with submicromolar affinity in equimolar amounts and assembled in a stable, significantly extended complex that was indistinguishable from the native mitochondrial TIM10 complex. Importantly, the reconstituted TIM10 complex is functional because it bound to the physiological substrate ADP/ATP carrier and displayed chaperone activity in refolding the model substrate firefly luciferase. These data demonstrate that the individual subunits can exist as independent, dynamically self-associating proteins. Assembly into the thermodynamically stable hexameric complex is necessary for the TIM10 chaperone function.


Assuntos
Proteínas de Membrana , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Calorimetria , Dicroísmo Circular , Reagentes de Ligações Cruzadas/farmacologia , Escherichia coli/metabolismo , Glutationa Transferase/metabolismo , Cinética , Luz , Luciferases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Espalhamento de Radiação , Fatores de Tempo , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...