Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2015: 931387, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25688379

RESUMO

Studies have reported that electroencephalogram signals in Alzheimer's disease patients usually have less synchronization than those of healthy subjects. Changes in electroencephalogram signals start at early stage but, clinically, these changes are not easily detected. To detect this perturbation, three neural synchrony measurement techniques: phase synchrony, magnitude squared coherence, and cross correlation are applied to three different databases of mild Alzheimer's disease patients and healthy subjects. We have compared the right and left temporal lobes of the brain with the rest of the brain areas (frontal, central, and occipital) as temporal regions are relatively the first ones to be affected by Alzheimer's disease. Moreover, electroencephalogram signals are further classified into five different frequency bands (delta, theta, alpha beta, and gamma) because each frequency band has its own physiological significance in terms of signal evaluation. A new approach using principal component analysis before applying neural synchrony measurement techniques has been presented and compared with Average technique. The simulation results indicated that applying principal component analysis before synchrony measurement techniques shows significantly better results as compared to the lateral one. At the end, all the aforementioned techniques are assessed by a statistical test (Mann-Whitney U test) to compare the results.


Assuntos
Doença de Alzheimer/diagnóstico , Sincronização de Fases em Eletroencefalografia/fisiologia , Eletroencefalografia/métodos , Lobo Temporal/fisiologia , Simulação por Computador , Humanos , Análise de Componente Principal , Estatísticas não Paramétricas
2.
J Neurosci Methods ; 207(1): 41-50, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22480988

RESUMO

Methods for the extraction of features from physiological datasets are growing needs as clinical investigations of Alzheimer's disease (AD) in large and heterogeneous population increase. General tools allowing diagnostic regardless of recording sites, such as different hospitals, are essential and if combined to inexpensive non-invasive methods could critically improve mass screening of subjects with AD. In this study, we applied two state of the art multiway array decomposition (MAD) methods to extract unique features from electroencephalograms (EEGs) of AD patients obtained from multiple sites. In comparison to MAD, spectral-spatial average filter (SSFs) of control and AD subjects were used as well as a common blind source separation method, algorithm for multiple unknown signal extraction (AMUSE), and singular value decomposition (SVD) coupled to tensor unfolding. We trained a feed-forward multilayer perceptron (MLP) to validate and optimize AD classification from two independent databases. Using a third EEG dataset, we demonstrated that features extracted from MAD outperformed features obtained from SSFs AMUSE in terms of root mean squared error (RMSE) and reaching up to 100% of accuracy in test condition. We propose that MAD maybe a useful tool to extract features for AD diagnosis offering great generalization across multi-site databases and opening doors to the discovery of new characterization of the disease.


Assuntos
Algoritmos , Doença de Alzheimer/diagnóstico , Eletroencefalografia/métodos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Idoso , Doença de Alzheimer/fisiopatologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...