Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 67(9): 2549-63, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27006484

RESUMO

We provide an overview of methods and workflows that can be used to investigate the topologies of Gene Regulatory Networks (GRNs) in the context of plant evolutionary-developmental (evo-devo) biology. Many of the species that occupy key positions in plant phylogeny are poorly adapted as laboratory models and so we focus here on techniques that can be efficiently applied to both model and non-model species of interest to plant evo-devo. We outline methods that can be used to describe gene expression patterns and also to elucidate the transcriptional, post-transcriptional, and epigenetic regulatory mechanisms underlying these patterns, in any plant species with a sequenced genome. We furthermore describe how the technique of Protein Resurrection can be used to confirm inferences on ancestral GRNs and also to provide otherwise-inaccessible points of reference in evolutionary histories by exploiting paralogues generated in gene and whole genome duplication events. Finally, we argue for the better integration of molecular data with information from paleobotanical, paleoecological, and paleogeographical studies to provide the fullest possible picture of the processes that have shaped the evolution of plant development.


Assuntos
Redes Reguladoras de Genes/fisiologia , Desenvolvimento Vegetal/genética , Evolução Biológica , Redes Reguladoras de Genes/genética , Plantas/genética
2.
Front Plant Sci ; 6: 1239, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793217

RESUMO

The majority of angiosperms are syncarpous- their gynoecium is composed of two or more fused carpels. In Arabidopsis thaliana, this fusion is regulated through the balance of expression between CUP SHAPED COTYLEDON (CUC) genes, which are orthologs of the Petunia hybrida transcription factor NO APICAL MERISTEM (NAM), and their post-transcriptional regulator miR164. Accordingly, the expression of a miR164-insensitive form of A. thaliana CUC2 causes a radical breakdown of carpel fusion. Here, we investigate the role of the NAM/miR164 genetic module in carpel closure in monocarpous plants. We show that the disruption of this module in monocarpous flowers of A. thaliana aux1-22 mutants causes a failure of carpel closure, similar to the failure of carpel fusion observed in the wild-type genetic background. This observation suggested that closely related mechanisms may bring about carpel closure and carpel fusion, at least in A. thaliana. We therefore tested whether these mechanisms were conserved in a eurosid species that is monocarpous in its wild-type form. We observed that expression of MtNAM, the NAM ortholog in the monocarpous eurosid Medicago truncatula, decreases during carpel margin fusion, suggesting a role for the NAM/miR164 module in this process. We transformed M. truncatula with a miR164-resistant form of MtNAM and observed, among other phenotypes, incomplete carpel closure in the resulting transformants. These data confirm the underlying mechanistic similarity between carpel closure and carpel fusion which we observed in A. thaliana. Our observations suggest that the role of the NAM/miR164 module in the fusion of carpel margins has been conserved at least since the most recent common ancestor of the eurosid clade, and open the possibility that a similar mechanism may have been responsible for carpel closure at much earlier stages of angiosperm evolution. We combine our results with studies of early diverging angiosperms to speculate on the role of the NAM/miR164 module in the origin and further evolution of the angiosperm carpel.

3.
Ann Bot ; 108(4): 589-98, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21486926

RESUMO

BACKGROUND: The angiosperms, or flowering plants, diversified in the Cretaceous to dominate almost all terrestrial environments. Molecular phylogenetic studies indicate that the orders Amborellales, Nymphaeales and Austrobaileyales, collectively termed the ANA grade, diverged as separate lineages from a remaining angiosperm clade at a very early stage in flowering plant evolution. By comparing these early diverging lineages, it is possible to infer the possible morphology and ecology of the last common ancestor of the extant angiosperms, and this analysis can now be extended to try to deduce the developmental mechanisms that were present in early flowering plants. However, not all species in the ANA grade form convenient molecular-genetic models. SCOPE: The present study reviews the genus Cabomba (Nymphaeales), which shows a range of features that make it potentially useful as a genetic model. We focus on characters that have probably been conserved since the last common ancestor of the extant flowering plants. To facilitate the use of Cabomba as a molecular model, we describe methods for its cultivation to flowering in the laboratory, a novel Cabomba flower expressed sequence tag database, a well-adapted in situ hybridization protocol and a measurement of the nuclear genome size of C. caroliniana. We discuss the features required for species to become tractable models, and discuss the relative merits of Cabomba and other ANA-grade angiosperms in molecular-genetic studies aimed at understanding the origin of the flowering plants.


Assuntos
Evolução Biológica , Modelos Biológicos , Nymphaeaceae/genética , Flores/genética , Genoma de Planta/genética , Nymphaeaceae/crescimento & desenvolvimento , Nymphaeaceae/ultraestrutura , Filogenia
4.
Ann Bot ; 107(9): 1511-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21320879

RESUMO

BACKGROUND AND AIMS: The closely related NAC family genes NO APICAL MERISTEM (NAM) and CUP-SHAPED COTYLEDON3 (CUC3) regulate the formation of boundaries within and between plant organs. NAM is post-transcriptionally regulated by miR164, whereas CUC3 is not. To gain insight into the evolution of NAM and CUC3 in the angiosperms, we analysed orthologous genes in early-diverging ANA-grade angiosperms and gymnosperms. METHODS: We obtained NAM- and CUC3-like sequences from diverse angiosperms and gymnosperms by a combination of reverse transcriptase PCR, cDNA library screening and database searching, and then investigated their phylogenetic relationships by performing maximum-likelihood reconstructions. We also studied the spatial expression patterns of NAM, CUC3 and MIR164 orthologues in female reproductive tissues of Amborella trichopoda, the probable sister to all other flowering plants. KEY RESULTS: Separate NAM and CUC3 orthologues were found in early-diverging angiosperms, but not in gymnosperms, which contained putative orthologues of the entire NAM + CUC3 clade that possessed sites of regulation by miR164. Multiple paralogues of NAM or CUC3 genes were noted in certain taxa, including Brassicaceae. Expression of NAM, CUC3 and MIR164 orthologues from Am. trichopoda was found to co-localize in ovules at the developmental boundary between the chalaza and nucellus. CONCLUSIONS: The NAM and CUC3 lineages were generated by duplication, and CUC3 was subsequently lost regulation by miR164, prior to the last common ancestor of the extant angiosperms. However, the paralogous NAM clade genes CUC1 and CUC2 were generated by a more recent duplication, near the base of Brassicaceae. The function of NAM and CUC3 in defining a developmental boundary in the ovule appears to have been conserved since the last common ancestor of the flowering plants, as does the post-transcriptional regulation in ovule tissues of NAM by miR164.


Assuntos
Genes de Plantas/genética , Magnoliopsida/genética , Meristema/genética , MicroRNAs/genética , Proteínas de Plantas/genética , Evolução Biológica , Cycadopsida/genética , DNA de Plantas/química , DNA de Plantas/genética , Bases de Dados Genéticas , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Magnoliopsida/anatomia & histologia , Magnoliopsida/classificação , Meristema/metabolismo , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
5.
Philos Trans R Soc Lond B Biol Sci ; 365(1539): 469-76, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20047873

RESUMO

MicroRNAs (miRNAs) control many important aspects of plant development, suggesting these molecules may also have played key roles in the evolution of developmental processes in plants. However, evolutionary-developmental (evo-devo) studies of miRNAs have been held back by technical difficulties in gene identification. To help solve this problem, we have developed a two-step procedure for the efficient identification of miRNA genes in any plant species. As a test case, we have studied the evolution of the MIR164 family in the angiosperms. We have identified novel MIR164 genes in three species occupying key phylogenetic positions and used these, together with published sequence data, to partially reconstruct the evolution of the MIR164 family since the last common ancestor of the extant flowering plants. We use our evolutionary reconstruction to discuss potential roles for MIR164 genes in the evolution of leaf shape and carpel closure in the angiosperms. The techniques we describe may be applied to any miRNA family and should thus enable plant evo-devo to begin to investigate the contributions miRNAs have made to the evolution of plant development.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Magnoliopsida/genética , MicroRNAs/genética , Flores/anatomia & histologia , Flores/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Magnoliopsida/anatomia & histologia , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , RNA de Plantas/química , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...