Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174259, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936718

RESUMO

Investigating microplastics (MPs) in groundwater suffers from problems already faced by surface water research, such as the absence of common protocols for sampling and analysis. While the use of plastic instruments during the collection, processing, and analysis of water samples is usually avoided in order to minimize unintentional contamination, groundwater research encompassing MPs faces unique challenges. Groundwater sampling typically relies on pre-existing monitoring wells (MWs) and water wells (WWs) that are often constructed with polyvinyl chloride (PVC) casings or pipes due to their favorable price-performance ratio. Despite the convenience, however, the suitability of PVC casings for MP research is questionable. Unfortunately, the specifics of these wells are often not detailed in published studies. Current literature does not indicate significant pollution risks from PVC casings, suggesting these wells might still be viable for MP studies. Our preliminary analysis of the existing literature indicates that if PVC exceeds 6 % of the total MP concentration, it is likely that casings and pipes made of PVC are a source of pollution. Above this threshold, additional investigations in MWs and WWs with PVC casings and pipes are suggested.

2.
Chemosphere ; 359: 142326, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763398

RESUMO

Accessory minerals in granitic rocks are unlikely significant radionuclide contributions to groundwater due to their remarkable durability. However, accessory minerals incorporating U and Th may suffer structural damages due to the radioactivity and become highly susceptible to alteration. This study investigates geochemistry coupled with textural analysis of the U-Th bearing accessory minerals using a field emission scanning electron microscope and an electron probe micro-analyzer. Altered zircons with numerous open structures related to the radioactive decay show higher contents of U and Th and low analytical totals. Some thorites show high contents of U and non-formula elements due to the hydrothermal alteration in the metamicted thorite. The cerianite including U occurs as micro-veinlet in fracture with trace of Fe and Mn oxides, which indicates secondary phase formation from the decomposed accessory minerals in an oxidizing environment. Some accessory minerals with the high content of U and Th have been found in Mesozoic granite terrain in South Korea, where high concentration levels of radionuclide in groundwater were also reported. The leaching of U may be more likely when the accessory minerals are highly metamicted or altered as found in our samples. The altered zircon and thorite of the study area could be major carriers of radioelement in Mesozoic granitic aquifers where the occurrence of soluble U-minerals has not been reported.


Assuntos
Água Subterrânea , Minerais , Dióxido de Silício , Poluentes Radioativos da Água , Água Subterrânea/química , Minerais/química , Minerais/análise , Poluentes Radioativos da Água/análise , Dióxido de Silício/química , Urânio/análise , Radioisótopos/análise , Monitoramento de Radiação , Tório/análise , Poluentes Radioativos do Solo/análise , Zircônio , Silicatos
3.
Sci Total Environ ; 824: 153851, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176372

RESUMO

Groundwater is a primary water source which supplies more than 2 billion people. The increasing population and urbanization of rural areas stresses and depletes the groundwater systems, reducing the groundwater quality. Among the emerging contaminants, microplastics (MPs) are becoming an important issue due to their persistency in the environment. Seepage through the pores and fractures as well as the interaction with colloidal aggregates can partially affect the MPs dynamics in the subsoil, making the detection of the MPs in the groundwater systems challenging. Based on literature, a critical analysis of MPs in groundwater is presented from a hydrogeological point of view. In addition, a review of the MPs data potentially affecting the groundwater systems are included. MPs in groundwater may have several sources, including the atmosphere, the interaction with surface water bodies, urban infrastructures, or agricultural soils. The characterization of both the groundwater dynamics and the heterogeneity of MPs is suggested, proposing a new framework named "Hydrogeoplastic Model". MPs detection methods aimed at characterizing the smaller fragments are necessary to clarify the fate of these contaminants in the aquifers. This review also aims to support future research on MP contamination in groundwater, pointing out the current knowledge and the future risks which could affect groundwater resources worldwide.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos , Água/análise , Poluentes Químicos da Água/análise
5.
Environ Geochem Health ; 44(7): 2065-2082, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33835360

RESUMO

A theoretical pattern for Fe and As co-precipitation was tested directly in a groundwater natural system. Several monitoring wells were sampled to identify the different endmembers that govern the hydrodynamics of the Ferrarelle Groundwater System in the Riardo Plain (Southern Italy). In agreement with recent investigations, we found a mix of a deep and a shallow component in different proportions, resulting in a specific chemical composition of groundwater in each well depending on the percentages of each component. The shallow component was characterized by EC ~ 430 µS/cm, Eh ~ 300 mV, Fe ~ 0.06 µmol/L and As ~ 0.01-0.12 µmol/L, while the deep component was characterized by EC ~ 3400 µS/cm, Eh ~ 170 mV, Fe ~ 140 µmol/L and As ~ 0.59 µmol/L. A general attenuation of As and Fe concentration that was not due to a simple dilution effect was observed in the mixing process. The oxidation of Fe(II) to Fe(III) produces solid precipitates which adsorb As from solution and then co-precipitate. The reactions pattern of Fe(II) oxidation and As adsorption gave a linear function between [As] and [Fe], where the angular coefficient depends on the [O2]/[H+] ratio. Chemical data obtained from our samples showed a very good agreement with this theoretical relationship. The investigated geochemical dynamics represented a natural process of attenuation of Fe and As, two undesirable elements that usually affect groundwater quality in volcanic aquifers in central-southern Italy, which are exploited to supply drinking water.


Assuntos
Arsênio , Água Subterrânea , Águas Minerais , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Compostos Férricos , Compostos Ferrosos , Água Subterrânea/química , Poluentes Químicos da Água/análise
6.
Environ Geochem Health ; 44(7): 1-28, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33649994

RESUMO

The Riardo basin hosts groundwater exploited for the production of high quality, naturally sparkling, bottled water (e.g., Ferrarelle water), and circulating in a system constituted by highly fractured Mesozoic carbonates, overlain by more impervious volcanic rocks of the Roccamonfina complex. The two formations are locally in hydraulic connection and dislocated by deep-rooted faults. The study aimed at elucidating groundwater origin and circulation, using isotopic tracers (δ18O, δ2H, δ11B and 87Sr/86Sr) coupled to groundwater dating (Tritium, CFCs and SF6). Besides recharge by local precipitation over the Riardo hydrogeological basin, stable isotope ratios in water indicated an extra-basin recharge, likely from the elevated surrounding carbonate reliefs (e.g., Maggiore and Matese Mts.). The mineralization process, promoted by the deep CO2 flux, controls the B and Sr contents. However, their isotopic ratios did not allow discriminating between circulation in the volcanic and in the carbonate aquifers, as in the latter the isotopic composition differed from the original marine signature. Groundwater model ages ranged from ~ 30 years for the volcanic endmember to > 70 years for the deep, mineralized end-member, with longer circuits recharged at higher elevations. Overall, the results of this study were particularly relevant for mineral water exploitation. A recharge from outside the hydrogeological basin could be evidenced, especially for the more mineralized and valuable groundwater, and an active recent recharge was detected for the whole Riardo system. Both findings will contribute to the refinement of the hydrogeological model and water budget, and to a sustainable development of the resource.


Assuntos
Água Subterrânea , Águas Minerais , Carbonatos , Monitoramento Ambiental/métodos , Água Subterrânea/química , Movimentos da Água
7.
Sci Total Environ ; 676: 501-513, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31051360

RESUMO

The definition of hydrogeological conceptual models sometimes suffers on uncertainties depending on the available dataset. The availability and the elaboration of long-term hydrogeological dataset allow ensuring a better definition of the aquifer dynamics and features. One of the main features, which can benefice on long-term datasets, is the recharge quantification. According to the literature, several methods exist to calculate the recharge and to get a deeper insight in recharge mode assessment. Most of them allow the quantification of infiltrating water by means of meteo-climatic data and land use information. In this research, a combined approach on hydrogeological time-series is proposed. The Cross-Correlation among the rainfall and the piezometric levels was applied to point out the response time of each aquifer layer. In addition, the Water Table Fluctuation method was used to indirectly quantify the recharge. The study area is the Roccamonfina Volcano caldera (Italy), where lateral inflows are absent, and the almost total natural groundwater discharge occurs in the Savone delle Ferriere stream. Here, a monitoring scheme of the major hydrogeological features was implemented. The local rainfall, the groundwater levels in 2 wells tapping the different aquifer layers, and the river stage of the Savone delle Ferriere stream were measured daily during the 2016-2017 period. The analyses defined different recharge modes for each aquifer layer. The aquifer recharge rates, calculated with different approaches, are comparable to each other and in line with the mean groundwater discharge through the Savone delle Ferriere streambed springs.

8.
Environ Sci Pollut Res Int ; 23(19): 19958-77, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27436380

RESUMO

The dynamics of natural contamination by Al and Fe colloids in volcanic aquifers of central-southern Italy were investigated. Localized perched aquifers, and their relative discharges, are strongly affected by the presence of massive suspended solids, which confer a white-lacteous coloration to the water. This phenomenon occasionally caused the interruption of water distribution due to the exceeding of Al and Fe concentrations in aquifers exploited for human supply. The cause was ascribed to water seepage from perched aquifers. Water discharges affected by such contamination was investigated for the Rocca Ripesena area (north-eastern sector of Vulsini Volcanic District) and for the Rianale Stream Valley (Roccamonfina Volcanic Complex). Hydrogeological survey of both areas confirmed the presence of perched aquifers not previously considered due to their low productivity. Pluviometric data and chemical parameters were periodically monitored. Water mineralization decreased with increasing rainfall, conversely Al and Fe concentrations increased. Statistical analysis confirmed the dependence of all the chemical variables on rock leaching, with the sole exception of Al and Fe which were imputed to colloids mobilization from local, strongly pedogenized pyroclastic material. The similarities in hydrogeological settings and mobilization dynamics in both areas suggest that the Al and Fe colloidal contamination should be more abundant than currently known in quaternary volcanic areas.


Assuntos
Alumínio/química , Coloides/química , Água Subterrânea/química , Ferro/química , Erupções Vulcânicas/análise , Itália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...