Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38343831

RESUMO

Microglia are resident immune cells of the brain and are implicated in the etiology of Alzheimer's Disease (AD) and other diseases. Yet the cellular and molecular processes regulating their function throughout the course of the disease are poorly understood. Here, we present the transcriptional landscape of primary microglia from 189 human postmortem brains, including 58 healthy aging individuals and 131 with a range of disease phenotypes, including 63 patients representing the full spectrum of clinical and pathological severity of AD. We identified transcriptional changes associated with multiple AD phenotypes, capturing the severity of dementia and neuropathological lesions. Transcript-level analyses identified additional genes with heterogeneous isoform usage and AD phenotypes. We identified changes in gene-gene coordination in AD, dysregulation of co-expression modules, and disease subtypes with distinct gene expression. Taken together, these data further our understanding of the key role of microglia in AD biology and nominate candidates for therapeutic intervention.

2.
Sci Adv ; 9(41): eadg3754, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824614

RESUMO

The cellular complexity of the human brain is established via dynamic changes in gene expression throughout development that is mediated, in part, by the spatiotemporal activity of cis-regulatory elements (CREs). We simultaneously profiled gene expression and chromatin accessibility in 45,549 cortical nuclei across six broad developmental time points from fetus to adult. We identified cell type-specific domains in which chromatin accessibility is highly correlated with gene expression. Differentiation pseudotime trajectory analysis indicates that chromatin accessibility at CREs precedes transcription and that dynamic changes in chromatin structure play a critical role in neuronal lineage commitment. In addition, we mapped cell type-specific and temporally specific genetic loci implicated in neuropsychiatric traits, including schizophrenia and bipolar disorder. Together, our results describe the complex regulation of cell composition at critical stages in lineage determination and shed light on the impact of spatiotemporal alterations in gene expression on neuropsychiatric disease.


Assuntos
Cromatina , Multiômica , Humanos , Cromatina/genética , Cromatina/metabolismo , Sequências Reguladoras de Ácido Nucleico , Diferenciação Celular/genética , Encéfalo/metabolismo
3.
Sci Data ; 10(1): 602, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684260

RESUMO

Alzheimer's disease (AD) is the most common form of dementia worldwide, with a projection of 151 million cases by 2050. Previous genetic studies have identified three main genes associated with early-onset familial Alzheimer's disease, however this subtype accounts for less than 5% of total cases. Next-generation sequencing has been well established and holds great promise to assist in the development of novel therapeutics as well as biomarkers to prevent or slow the progression of this devastating disease. Here we present a public resource of functional genomic data from the parahippocampal gyrus of 201 postmortem control, mild cognitively impaired (MCI) and AD individuals from the Mount Sinai brain bank, of which whole-genome sequencing (WGS), and bulk RNA sequencing (RNA-seq) were previously published. The genomic data include bulk proteomics and DNA methylation, as well as cell-type-specific RNA-seq and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data. We have performed extensive preprocessing and quality control, allowing the research community to access and utilize this public resource available on the Synapse platform at https://doi.org/10.7303/syn51180043.2 .


Assuntos
Doença de Alzheimer , Giro Para-Hipocampal , Humanos , Doença de Alzheimer/genética , Bioensaio , Multiômica
4.
bioRxiv ; 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398396

RESUMO

Inflammation drives many age-related, especially neurological, diseases, and likely mediates age-related proteotoxicity. For example, dementia due to Alzheimer's Disease (AD), cerebral vascular disease, many other neurodegenerative conditions is increasingly among the most devastating burdens on the American (and world) health system and threatens to bankrupt the American health system as the population ages unless effective treatments are developed. Dementia due to either AD or cerebral vascular disease, and plausibly many other neurodegenerative and even psychiatric conditions, is driven by increased age-related inflammation, which in turn appears to mediate Abeta and related proteotoxic processes. The functional significance of inflammation during aging is also supported by the fact that Humira, which is simply an antibody to the pro-inflammatory cytokine TNF-a, is the best-selling drug in the world by revenue. These observations led us to develop parallel high-throughput screens to discover small molecules which inhibit age-related Abeta proteotoxicity in a C. elegans model of AD AND LPS-induced microglial TNF-a. In the initial screen of 2560 compounds (Microsource Spectrum library) to delay Abeta proteotoxicity, the most protective compounds were, in order, phenylbutyrate, methicillin, and quetiapine, which belong to drug classes (HDAC inhibitors, beta lactam antibiotics, and tricyclic antipsychotics, respectably) already robustly implicated as promising to protect in neurodegenerative diseases, especially AD. RNAi and chemical screens indicated that the protective effects of HDAC inhibitors to reduce Abeta proteotoxicity are mediated by inhibition of HDAC2, also implicated in human AD, dependent on the HAT Creb binding protein (Cbp), which is also required for the protective effects of both dietary restriction and the daf-2 mutation (inactivation of IGF-1 signaling) during aging. In addition to methicillin, several other beta lactam antibiotics also delayed Abeta proteotoxicity and reduced microglial TNF-a. In addition to quetiapine, several other tricyclic antipsychotic drugs also delayed age-related Abeta proteotoxicity and increased microglial TNF-a, leading to the synthesis of a novel congener, GM310, which delays Abeta as well as Huntingtin proteotoxicity, inhibits LPS-induced mouse and human microglial and monocyte TNF-a, is highly concentrated in brain after oral delivery with no apparent toxicity, increases lifespan, and produces molecular responses highly similar to those produced by dietary restriction, including induction of Cbp inhibition of inhibitors of Cbp, and genes promoting a shift away from glycolysis and toward metabolism of alternate (e.g., lipid) substrates. GM310, as well as FDA-approved tricyclic congeners, prevented functional impairments and associated increase in TNF-a in a mouse model of stroke. Robust reduction of glycolysis by GM310 was functionally corroborated by flux analysis, and the glycolytic inhibitor 2-DG inhibited microglial TNF-a and other markers of inflammation, delayed Abeta proteotoxicity, and increased lifespan. These results support the value of phenotypic screens to discover drugs to treat age-related, especially neurological and even psychiatric diseases, including AD and stroke, and to clarify novel mechanisms driving neurodegeneration (e.g., increased microglial glycolysis drives neuroinflammation and subsequent neurotoxicity) suggesting novel treatments (selective inhibitors of microglial glycolysis).

5.
World Neurosurg ; 171: e195-e205, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36455847

RESUMO

BACKGROUND: Stroke is a leading cause of mortality and disability worldwide. Exosomes, or small extracellular vesicles with signaling properties, have recently been identified as novel mechanisms for stroke treatment. This study aims to use bibliometric techniques to identify current research trends and future directions of exosome-based stroke therapy. METHODS: The Web of Science Core Collection was searched using terms that included "exosome" and all stroke types. Bibliometric data, including authors, publication years, citations, countries/regions, institutions, journals, and Keywords Plus, were extracted directly from the Web of Science Core Collection. Keywords were mapped using VOSviewer. RESULTS: From 2010 to 2021, 424 documents were identified with a total of 12,708 citations. The number of publications increased yearly from 2012 to 2021, the majority of which were research and review articles. China and the United States produced the most publications with Henry Ford Hospital and Oakland University serving as the 2 most highly published research institutions. Documents were published most frequently in the journal Stroke. Keywords Plus analyses revealed 3 main research areas: exosomes as pathogenic mediators, biomarkers, and treatments of stroke. Ischemic stroke was the most prevalent type of stroke included in these studies. CONCLUSIONS: Using bibliometric techniques, this study identified a current and growing interest in the research of exosomes in stroke, particularly in their pathogenic, biomarker, and potential minimally invasive therapeutic properties. Given the high prevalence of ischemic stroke in the current literature, further characterization of exosomes in other stroke types, such as intracerebral hemorrhage, emerges as a future direction for this field of research.


Assuntos
Exossomos , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Hemorragia Cerebral , Bibliometria
6.
Nat Genet ; 54(10): 1493-1503, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163279

RESUMO

Identification of risk variants for neuropsychiatric diseases within enhancers underscores the importance of understanding population-level variation in enhancer function in the human brain. Besides regulating tissue-specific and cell-type-specific transcription of target genes, enhancers themselves can be transcribed. By jointly analyzing large-scale cell-type-specific transcriptome and regulome data, we cataloged 30,795 neuronal and 23,265 non-neuronal candidate transcribed enhancers. Examination of the transcriptome in 1,382 brain samples identified robust expression of transcribed enhancers. We explored gene-enhancer coordination and found that enhancer-linked genes are strongly implicated in neuropsychiatric disease. We identified expression quantitative trait loci (eQTLs) for both genes and enhancers and found that enhancer eQTLs mediate a substantial fraction of neuropsychiatric trait heritability. Inclusion of enhancer eQTLs in transcriptome-wide association studies enhanced functional interpretation of disease loci. Overall, our study characterizes the gene-enhancer regulome and genetic mechanisms in the human cortex in both healthy and diseased states.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Encéfalo , Elementos Facilitadores Genéticos/genética , Humanos , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico , Transcriptoma/genética
7.
Nat Neurosci ; 25(10): 1366-1378, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171428

RESUMO

To characterize the dysregulation of chromatin accessibility in Alzheimer's disease (AD), we generated 636 ATAC-seq libraries from neuronal and nonneuronal nuclei isolated from the superior temporal gyrus and entorhinal cortex of 153 AD cases and 56 controls. By analyzing a total of ~20 billion read pairs, we expanded the repertoire of known open chromatin regions (OCRs) in the human brain and identified cell-type-specific enhancer-promoter interactions. We show that interindividual variability in OCRs can be leveraged to identify cis-regulatory domains (CRDs) that capture the three-dimensional structure of the genome (3D genome). We identified AD-associated effects on chromatin accessibility, the 3D genome and transcription factor (TF) regulatory networks. For one of the most AD-perturbed TFs, USF2, we validated its regulatory effect on lysosomal genes. Overall, we applied a systematic approach to understanding the role of the 3D genome in AD. We provide all data as an online resource for widespread community-based analysis.


Assuntos
Doença de Alzheimer , Cromatina , Doença de Alzheimer/genética , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
8.
NPJ Genom Med ; 7(1): 52, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064543

RESUMO

Recent efforts have identified genetic loci that are associated with coronavirus disease 2019 (COVID-19) infection rates and disease outcome severity. Translating these genetic findings into druggable genes that reduce COVID-19 host susceptibility is a critical next step. Using a translational genomics approach that integrates COVID-19 genetic susceptibility variants, multi-tissue genetically regulated gene expression (GReX), and perturbagen signatures, we identified IL10RB as the top candidate gene target for COVID-19 host susceptibility. In a series of validation steps, we show that predicted GReX upregulation of IL10RB and higher IL10RB expression in COVID-19 patient blood is associated with worse COVID-19 outcomes and that in vitro IL10RB overexpression is associated with increased viral load and activation of disease-relevant molecular pathways.

9.
Pharmacol Biochem Behav ; 219: 173428, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868565

RESUMO

Discovery of interventions that delay or minimize age-related diseases is arguably the major goal of aging research. Conversely discovery of interventions based on phenotypic screens have often led to further elucidation of pathophysiological mechanisms. Although most hypotheses to explain lifespan focus on cell-autonomous processes, increasing evidence suggests that in multicellular organisms, neurons, particularly nutrient-sensing neurons, play a determinative role in lifespan and age-related diseases. For example, protective effects of dietary restriction and inactivation of insulin-like signaling increase lifespan and delay age-related diseases dependent on Creb-binding protein in GABA neurons, and Nrf2/Skn1 in just 2 nutrient-sensing neurons in C. elegans. Screens for drugs that increase lifespan also indicate that such drugs are predominantly active through neuronal signaling. Our own screens also indicate that neuroactive drugs also delay pathology in an animal model of Alzheimer's Disease, as well as inhibit cytokine production implicated in driving many age-related diseases. The most likely mechanism by which nutrient-sensing neurons influence lifespan and the onset of age-related diseases is by regulating metabolic architecture, particularly the relative rate of glycolysis vs. alternative metabolic pathways such as ketone and lipid metabolism. These results suggest that neuroactive compounds are a most promising class of drugs to delay or minimize age-related diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Envelhecimento/metabolismo , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dieta , Insulina/farmacologia , Longevidade/genética , Neurônios/metabolismo , Nutrientes
10.
medRxiv ; 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34100031

RESUMO

BACKGROUND: Recent efforts have identified genetic loci that are associated with coronavirus disease 2019 (COVID-19) infection rates and disease outcome severity. Translating these genetic findings into druggable genes and readily available compounds that reduce COVID-19 host susceptibility is a critical next step. METHODS: We integrate COVID-19 genetic susceptibility variants, multi-tissue genetically regulated gene expression (GReX) and perturbargen signatures to identify candidate genes and compounds that reverse the predicted gene expression dysregulation associated with COVID-19 susceptibility. The top candidate gene is validated by testing both its GReX and observed blood transcriptome association with COVID-19 severity, as well as by in vitro perturbation to quantify effects on viral load and molecular pathway dysregulation. We validate the in silico drug repositioning analysis by examining whether the top candidate compounds decrease COVID-19 incidence based on epidemiological evidence. RESULTS: We identify IL10RB as the top key regulator of COVID-19 host susceptibility. Predicted GReX up-regulation of IL10RB and higher IL10RB expression in COVID-19 patient blood is associated with worse COVID-19 outcomes. In vitro IL10RB overexpression is associated with increased viral load and activation of immune-related molecular pathways. Azathioprine and retinol are prioritized as candidate compounds to reduce the likelihood of testing positive for COVID-19. CONCLUSIONS: We establish an integrative data-driven approach for gene target prioritization. We identify and validate IL10RB as a suitable molecular target for modulation of COVID-19 host susceptibility. Finally, we provide evidence for a few readily available medications that would warrant further investigation as drug repositioning candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...