Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798431

RESUMO

Chromosome congression and alignment on the metaphase plate involves lateral and microtubule plus-end interactions with the kinetochore. Here we take advantage of our ability to efficiently generate a GFP-marked acentric X chromosome fragment in Drosophila neuroblasts to identify forces acting on chromosome arms that drive congression and alignment. We find acentrics efficiently align on the metaphase plate, often more rapidly than kinetochore-bearing chromosomes. Unlike intact chromosomes, the paired sister acentrics oscillate as they move to and reside on the metaphase plate in a plane distinct and significantly further from the main mass of intact chromosomes. Consequently, at anaphase onset acentrics are oriented either parallel or perpendicular to the spindle. Parallel-oriented sisters separate by sliding while those oriented perpendicularly separate via unzipping. This oscillation, together with the fact that in monopolar spindles acentrics are rapidly shunted away from the poles, indicates that distributed plus-end directed forces are primarily responsible for acentric migration. This conclusion is supported by the observation that reduction of EB1 preferentially disrupts acentric alignment. In addition, reduction of Klp3a activity, a gene required for the establishment of pole-to-pole microtubules, preferentially disrupts acentric alignment. Taken together these studies suggest that plus-end forces mediated by the outer pole-to-pole microtubules are primarily responsible for acentric metaphase alignment. Surprisingly, we find that a small fraction of sister acentrics are anti-parallel aligned indicating that the kinetochore is required to ensure parallel alignment of sister chromatids. Finally, we find induction of acentric chromosome fragments results in a global reorganization of the congressed chromosomes into a torus configuration. Article Summary: The kinetochore serves as a site for attaching microtubules and allows for successful alignment, separation, and segregation of replicated sister chromosomes during cell division. However, previous studies have revealed that sister chromosomes without kinetochores (acentrics) often align to the metaphase plate, undergo separation and segregation, and are properly transmitted to daughter cells. In this study, we discuss the forces acting on chromosomes, independent of the kinetochore, underlying their successful alignment in early mitosis.

2.
PLoS Genet ; 17(1): e1009304, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513180

RESUMO

Although kinetochores normally play a key role in sister chromatid separation and segregation, chromosome fragments lacking kinetochores (acentrics) can in some cases separate and segregate successfully. In Drosophila neuroblasts, acentric chromosomes undergo delayed, but otherwise normal sister separation, revealing the existence of kinetochore- independent mechanisms driving sister chromosome separation. Bulk cohesin removal from the acentric is not delayed, suggesting factors other than cohesin are responsible for the delay in acentric sister separation. In contrast to intact kinetochore-bearing chromosomes, we discovered that acentrics align parallel as well as perpendicular to the mitotic spindle. In addition, sister acentrics undergo unconventional patterns of separation. For example, rather than the simultaneous separation of sisters, acentrics oriented parallel to the spindle often slide past one another toward opposing poles. To identify the mechanisms driving acentric separation, we screened 117 RNAi gene knockdowns for synthetic lethality with acentric chromosome fragments. In addition to well-established DNA repair and checkpoint mutants, this candidate screen identified synthetic lethality with X-chromosome-derived acentric fragments in knockdowns of Greatwall (cell cycle kinase), EB1 (microtubule plus-end tracking protein), and Map205 (microtubule-stabilizing protein). Additional image-based screening revealed that reductions in Topoisomerase II levels disrupted sister acentric separation. Intriguingly, live imaging revealed that knockdowns of EB1, Map205, and Greatwall preferentially disrupted the sliding mode of sister acentric separation. Based on our analysis of EB1 localization and knockdown phenotypes, we propose that in the absence of a kinetochore, microtubule plus-end dynamics provide the force to resolve DNA catenations required for sister separation.


Assuntos
Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Cinetocoros , Animais , DNA Topoisomerases Tipo II/genética , Drosophila melanogaster/genética , Larva/genética , Metáfase/genética , Microtúbulos/genética , Mitose/genética , Fuso Acromático/genética , Coesinas
3.
J Cell Biol ; 216(6): 1597-1608, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28500183

RESUMO

Although poleward segregation of acentric chromosomes is well documented, the underlying mechanisms remain poorly understood. Here, we demonstrate that microtubules play a key role in poleward movement of acentric chromosome fragments generated in Drosophila melanogaster neuroblasts. Acentrics segregate with either telomeres leading or lagging in equal frequency and are preferentially associated with peripheral bundled microtubules. In addition, laser ablation studies demonstrate that segregating acentrics are mechanically associated with microtubules. Finally, we show that successful acentric segregation requires the chromokinesin Klp3a. Reduced Klp3a function results in disorganized interpolar microtubules and shortened spindles. Normally, acentric poleward segregation occurs at the periphery of the spindle in association with interpolar microtubules. In klp3a mutants, acentrics fail to localize and segregate along the peripheral interpolar microtubules and are abnormally positioned in the spindle interior. These studies demonstrate an unsuspected role for interpolar microtubules in driving acentric segregation.


Assuntos
Segregação de Cromossomos , Cromossomos de Insetos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Cinesinas/genética , Microscopia Confocal , Microscopia de Fluorescência , Microscopia de Vídeo , Mutação , Telômero/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...