Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18839, 2022 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-36336707

RESUMO

Antarctica is one of the most stressful environments for plant life and the Antarctic pearlwort (Colobanthus quitensis) is adapted to the hostile conditions. Plant-associated microorganisms can contribute to plant survival in cold environments, but scarce information is available on the taxonomic structure and functional roles of C. quitensis-associated microbial communities. This study aimed at evaluating the possible impacts of climate warming on the taxonomic structure of C. quitensis endophytes and at investigating the contribution of culturable bacterial endophytes to plant growth at low temperatures. The culture-independent analysis revealed changes in the taxonomic structure of bacterial and fungal communities according to plant growth conditions, such as the collection site and the presence of open-top chambers (OTCs), which can simulate global warming. Plants grown inside OTCs showed lower microbial richness and higher relative abundances of biomarker bacterial genera (Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Aeromicrobium, Aureimonas, Hymenobacter, Novosphingobium, Pedobacter, Pseudomonas and Sphingomonas) and fungal genera (Alternaria, Cistella, and Vishniacozyma) compared to plants collected from open areas (OA), as a possible response to global warming simulated by OTCs. Culturable psychrotolerant bacteria of C. quitensis were able to endophytically colonize tomato seedlings and promote shoot growth at low temperatures, suggesting their potential contribution to plant tolerance to cold conditions.


Assuntos
Aquecimento Global , Micobioma , Temperatura , Regiões Antárticas , Bactérias/genética , Folhas de Planta , Plantas
2.
FEMS Microbiol Ecol ; 98(1)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34910139

RESUMO

Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions.


Assuntos
Microbiota , Bactérias/genética , Ecologia , Fungos , Plantas
3.
Physiol Plant ; 172(4): 1950-1965, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33783004

RESUMO

Volatile organic compounds (VOCs) are produced by soil-borne microorganisms and play crucial roles in fungal interactions with plants and phytopathogens. Although VOCs have been characterized in Trichoderma spp., the mechanisms against phytopathogens strongly differ according to the strain and pathosystem. This study aimed at characterizing VOCs produced by three Trichoderma strains used as biofungicides and to investigate their effects against grapevine downy mildew (caused by Plasmopara viticola). A VOC-mediated reduction of downy mildew severity was found in leaf disks treated with Trichoderma asperellum T34 (T34), T. harzianum T39 (T39), and T. atroviride SC1 (SC1) and 31 compounds were detected by head space-solid phase microextraction gas chromatography-mass spectrometry. Among the Trichoderma VOCs annotated, α-farnesene, cadinene, 1,3-octadiene, 2-pentylfuran, and 6-pentyl-2H-pyran-2-one reduced downy mildew severity on grapevine leaf disks. In particular, 6-pentyl-2H-pyran-2-one and 2-pentylfuran increased the accumulation of callose and enhanced the modulation of defense-related genes after P. viticola inoculation, indicating an induction of grapevine defense mechanisms. Moreover, 6-pentyl-2H-pyran-2-one activated the hypersensitive response after P. viticola inoculation, possibly to reinforce the grapevine defense reaction. These results indicate that Trichoderma VOCs can induce grapevine resistance, and these molecules could be further applied to control grapevine downy mildew.


Assuntos
Trichoderma , Vitis , Compostos Orgânicos Voláteis , Hypocreales , Doenças das Plantas
4.
Front Plant Sci ; 10: 62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778365

RESUMO

Waterlogging is a severe abiotic stressor causing significant growth impairment and yield losses in many crops. Maize is highly sensitive to the excess of water, and against the background of climate change there is an urgent need for deeper insights into the mechanisms of crop adaptation to waterlogging. In the present study, changes in maize morphology at the 4-5 leaf stage and the expression of three candidate genes for flooding tolerance in plants subjected to six continuous days of waterlogging were recorded in 19 commercial hybrids and in the inbred line B73, with the aim of investigating the current variability in cultivated hybrids and identifying useful morphological and molecular markers for screening tolerant genotypes. Here it was demonstrated that root parameters (length, area, biomass) were more impaired by waterlogging than shoot parameters (shoot height and biomass). Culm height generally increased in stressed plants (by up to +24% vs. controls), while shoot biomass was significantly reduced in only two hybrids. Root biomass was reduced in all the hybrids, by an average of 30%, and significantly in 7 hybrids, while root length and area were even more severely reduced, by 30-55% vs. controls, depending on the hybrid. The earlier appearance of aerial roots seemed to be associated with greater root injuries. In leaves, the transcript of the PFP enzyme (phosphofructokinase), which is involved in glycolytic reactions, was markedly up-regulated (up to double the values) in half the waterlogged hybrids, but down-regulated in the others. The transcript of CYP81D8 (ROS-related proteins) in waterlogged plants exhibited relevant increases or strong decreases in level, depending on the hybrid. The transcript of the AOX1A gene, coding for a mitochondrial respiratory electron transport chain-related protein, was markedly down-regulated in all the treated hybrids. Expression analysis of these genes under extreme waterlogging only partially correlate with the shoot and root growth impairments observed, and AOX1A seems to be the most informative of them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...