Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Remote Sens (Basel) ; 13(8): 1589, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36082340

RESUMO

In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Established VHGPR models were then applied to S2 L1C and L2A reflectance data for mapping: leaf chlorophyll content (Cab ), leaf water content (Cw ), fractional vegetation coverage (FVC), leaf area index (LAI), and upscaled leaf biochemical compounds, i.e., LAI * Cab (laiCab) and LAI * Cw (laiCw). Estimated variables were validated using in situ reference data collected during the Munich-North-Isar field campaigns within growing seasons of maize and winter wheat in the years 2017 and 2018. For leaf biochemicals, retrieval from BOA reflectance slightly outperformed results from TOA reflectance, e.g., obtaining a root mean squared error (RMSE) of 6.5 µg/cm2 (BOA) vs. 8 µg/cm2 (TOA) in the case of Cab . For the majority of canopy-level variables, instead, estimation accuracy was higher when using TOA reflectance data, e.g., with an RMSE of 139 g/m2 (BOA) vs. 113 g/m2 (TOA) for laiCw. Derived maps were further compared against reference products obtained from the ESA Sentinel Application Platform (SNAP) Biophysical Processor. Altogether, the consistency between L1C and L2A retrievals confirmed that crop traits can potentially be estimated directly from TOA reflectance data. Successful mapping of canopy-level crop traits including information about prediction confidence suggests that the models can be transferred over spatial and temporal scales and, therefore, can contribute to decision-making processes for cropland management.

2.
Geosci Model Dev ; 13(4): 1945-1957, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36082005

RESUMO

Atmospheric radiative transfer models (RTMs) are software tools that help researchers in understanding the radiative processes occurring in the Earth's atmosphere. Given their importance in remote sensing applications, the intercomparison of atmospheric RTMs is therefore one of the main tasks used to evaluate model performance and identify the characteristics that differ between models. This can be a tedious tasks that requires good knowledge of the model inputs/outputs and the generation of large databases of consistent simulations. With the evolution of these software tools, their increase in complexity bears implications for their use in practical applications and model intercomparison. Existing RTM-specific graphical user interfaces are not optimized for performing intercomparison studies of a wide variety of atmospheric RTMs. In this paper, we present the Atmospheric Look-up table Generator (ALG) version 2.0, a new software tool that facilitates generating large databases for a variety of atmospheric RTMs. ALG facilitates consistent and intuitive user interaction to enable the running of model executions and storing of RTM data for any spectral configuration in the optical domain. We demonstrate the utility of ALG in performing intercomparison studies of radiance simulations from broadly used atmospheric RTMs (6SV, MODTRAN, and libRadtran) through global sensitivity analysis. We expect that providing ALG to the research community will facilitate the usage of atmospheric RTMs to a wide range of applications in Earth observation.

3.
ISPRS J Photogramm Remote Sens ; 167: 289-304, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36082068

RESUMO

Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radiance data and associated input variables. This LUT was then used to train the Bayesian machine learning algorithms Gaussian processes regression (GPR) and variational heteroscedastic GPR (VHGPR). PROSAIL simulations were also used to train GPR and VHGPR models for LAI retrieval from S2 images at bottom-of-atmosphere (BOA) level (L2A product) for comparison purposes. The BOA and TOA LAI products were consistently validated against a field dataset with GPR (R2 of 0.78) and with VHGPR (R 2 of 0.80) and for both cases a slightly lower RMSE for the TOA LAI product (about 10% reduction). Because of delivering superior accuracies and lower uncertainties, the VHGPR models were further applied for LAI mapping using S2 acquisitions over the agricultural sites Marchfeld (Austria) and Barrax (Spain). The models led to consistent LAI maps at BOA and TOA scale. The LAI maps were also compared against LAI maps as generated by the SNAP toolbox, which is based on a neural network (NN). Maps were again consistent, however the SNAP NN model tends to overestimate over dense vegetation cover. Overall, this study demonstrated that hybrid LAI retrieval algorithms can be developed from TOA radiance data given a cloud-free sky, thus without the need of atmospheric correction. To the benefit of the community, the development of such hybrid models for the retrieval vegetation properties from BOA or TOA images has been streamlined in the freely downloadable ALG-ARTMO software framework.

4.
Remote Sens (Basel) ; 11(16): 1923, 2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36081836

RESUMO

Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with the atmospheric RTM MODTRAN5. Because of MODTRAN's computational burden and GSA's demand for many simulations, we first developed a surrogate statistical learning model, i.e., an emulator, that allows approximating RTM outputs through a machine learning algorithm with low computation time. A Gaussian process regression (GPR) emulator was used to reproduce lookup tables of TOA radiance as a function of 12 input variables with relative errors of 2.4%. GSA total sensitivity results quantified the driving variables of emulated TOA radiance along the 400-2500 nm spectral range at 15 cm-1 (between 0.3-9 nm); overall, the vegetation variables play a more dominant role than atmospheric variables. This suggests the possibility to retrieve biophysical variables directly from at-sensor TOA radiance data. Particularly promising are leaf chlorophyll content, leaf water thickness and leaf area index, as these variables are the most important drivers in governing TOA radiance outside the water absorption regions. A software framework was developed to facilitate the development of retrieval models from at-sensor TOA radiance data. As a proof of concept, maps of these biophysical variables have been generated for both TOA (L1C) and bottom-of-atmosphere (L2A) Sentinel-2 data by means of a hybrid retrieval scheme, i.e., training GPR retrieval algorithms using the RTM simulations. Obtained maps from L1C vs L2A data are consistent, suggesting that vegetation properties can be directly retrieved from TOA radiance data given a cloud-free sky, thus without the need of an atmospheric correction.

5.
Remote Sens (Basel) ; 11(2): 157, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36082067

RESUMO

Collection of spectroradiometric measurements with associated biophysical variables is an essential part of the development and validation of optical remote sensing vegetation products. However, their quality can only be assessed in the subsequent analysis, and often there is a need for collecting extra data, e.g., to fill in gaps. To generate empirical-like surface reflectance data of vegetated surfaces, we propose to exploit emulation, i.e., reconstruction of spectral measurements through statistical learning. We evaluated emulation against classical interpolation methods using an empirical field dataset with associated hyperspectral spaceborne CHRIS and airborne HyMap reflectance spectra, to produce synthetic CHRIS and HyMap reflectance spectra for any combination of input biophysical variables. Results indicate that: (1) emulation produces surface reflectance data more accurately than interpolation when validating against a separate part of the field dataset; and (2) emulation produces the spectra multiple times (tens to hundreds) faster than interpolation. This technique opens various data processing opportunities, e.g., emulators not only allow rapidly producing large synthetic spectral datasets, but they can also speed up computationally intensive processing routines such as synthetic scene generation. To demonstrate this, emulators were run to simulate hyperspectral imagery based on input maps of a few biophysical variables coming from CHRIS, HyMap and Sentinel-2 (S2). The emulators produced spaceborne CHRIS-like and airborne HyMap-like surface reflectance imagery in the order of seconds, thereby approximating the spectra of vegetated surfaces sufficiently similar to the reference images. Similarly, it took a few minutes to produce a hyperspectral data cube with a spatial texture of S2 and a spectral resolution of HyMap.

6.
IEEE J Sel Top Appl Earth Obs Remote Sens ; 11(12): 4918-4931, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36081454

RESUMO

Computationally expensive radiative transfer models (RTMs) are widely used to realistically reproduce the light interaction with the earth surface and atmosphere. Because these models take long processing time, the common practice is to first generate a sparse look-up table (LUT) and then make use of interpolation methods to sample the multidimensional LUT input variable space. However, the question arise whether common interpolation methodsperform most accurate. As an alternative to interpolation, this paper proposes to use emulation, i.e., approximating the RTM output by means of the statistical learning. Two experiments were conducted to assess the accuracy in delivering spectral outputs using interpolation and emulation: at canopy level, using PROSAIL; and at top-of-atmosphere level, using MODTRAN. Various interpolation (nearest-neighbor, inverse distance weighting, and piece-wice linear) and emulation [Gaussian process regression (GPR), kernel ridge regression, and neural networks] methods were evaluated against a dense reference LUT. In all experiments, the emulation methods clearly produced more accurate output spectra than classical interpolation methods. The GPR emulation performed up to ten times more accurately than the best performing interpolation method, and this with a speed that is competitive with the faster interpolation methods. It is concluded that emulation can function as a fast and more accurate alternative to commonly used interpolation methods for reconstructing RTM spectral data.

7.
Remote Sens (Basel) ; 10(10): 1551, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36081617

RESUMO

Estimates of Sun-Induced vegetation chlorophyll Fluorescence (SIF) using remote sensing techniques are commonly determined by exploiting solar and/or telluric absorption features. When SIF is retrieved in the strong oxygen (O2) absorption features, atmospheric effects must always be compensated. Whereas correction of atmospheric effects is a standard airborne or satellite data processing step, there is no consensus regarding whether it is required for SIF proximal-sensing measurements nor what is the best strategy to be followed. Thus, by using simulated data, this work provides a comprehensive analysis about how atmospheric effects impact SIF estimations on proximal sensing, regarding: (1) the sensor height above the vegetated canopy; (2) the SIF retrieval technique used, e.g., Fraunhofer Line Discriminator (FLD) family or Spectral Fitting Methods (SFM); and (3) the instrument's spectral resolution. We demonstrate that for proximal-sensing scenarios compensating for atmospheric effects by simply introducing the O2 transmittance function into the FLD or SFM formulations improves SIF estimations. However, these simplistic corrections still lead to inaccurate SIF estimations due to the multiplication of spectrally convolved atmospheric transfer functions with absorption features. Consequently, a more rigorous oxygen compensation strategy is proposed and assessed by following a classic airborne atmospheric correction scheme adapted to proximal sensing. This approach allows compensating for the O2 absorption effects and, at the same time, convolving the high spectral resolution data according to the corresponding Instrumental Spectral Response Function (ISRF) through the use of an atmospheric radiative transfer model. Finally, due to the key role of O2 absorption on the evaluated proximal-sensing SIF retrieval strategies, its dependency on surface pressure (p) and air temperature (T) was also assessed. As an example, we combined simulated spectral data with p and T measurements obtained for a one-year period in the Hyytiälä Forestry Field Station in Finland. Of importance hereby is that seasonal dynamics in terms of T and p, if not appropriately considered as part of the retrieval strategy, can result in erroneous SIF seasonal trends that mimic those of known dynamics for temperature-dependent physiological responses of vegetation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...