Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 13 Suppl 6: S7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23134775

RESUMO

BACKGROUND: A current challenge in gene annotation is to define the gene function in the context of the network of relationships instead of using single genes. The inference of gene networks (GNs) has emerged as an approach to better understand the biology of the system and to study how several components of this network interact with each other and keep their functions stable. However, in general there is no sufficient data to accurately recover the GNs from their expression levels leading to the curse of dimensionality, in which the number of variables is higher than samples. One way to mitigate this problem is to integrate biological data instead of using only the expression profiles in the inference process. Nowadays, the use of several biological information in inference methods had a significant increase in order to better recover the connections between genes and reduce the false positives. What makes this strategy so interesting is the possibility of confirming the known connections through the included biological data, and the possibility of discovering new relationships between genes when observed the expression data. Although several works in data integration have increased the performance of the network inference methods, the real contribution of adding each type of biological information in the obtained improvement is not clear. METHODS: We propose a methodology to include biological information into an inference algorithm in order to assess its prediction gain by using biological information and expression profile together. We also evaluated and compared the gain of adding four types of biological information: (a) protein-protein interaction, (b) Rosetta stone fusion proteins, (c) KEGG and (d) KEGG+GO. RESULTS AND CONCLUSIONS: This work presents a first comparison of the gain in the use of prior biological information in the inference of GNs by considering the eukaryote (P. falciparum) organism. Our results indicates that information based on direct interaction can produce a higher improvement in the gain than data about a less specific relationship as GO or KEGG. Also, as expected, the results show that the use of biological information is a very important approach for the improvement of the inference. We also compared the gain in the inference of the global network and only the hubs. The results indicates that the use of biological information can improve the identification of the most connected proteins.


Assuntos
Redes Reguladoras de Genes , Algoritmos , Bases de Dados Genéticas , Genoma , Plasmodium falciparum/genética , Mapas de Interação de Proteínas , Proteínas/metabolismo
2.
BMC Microbiol ; 8: 101, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-18565227

RESUMO

BACKGROUND: Little is known about bacterial transcriptional regulatory networks (TRNs). In Escherichia coli, which is the organism with the largest wet-lab validated TRN, its set of interactions involves only approximately 50% of the repertoire of transcription factors currently known, and ~25% of its genes. Of those, only a small proportion describes the regulation of processes that are clinically relevant, such as drug resistance mechanisms. RESULTS: We designed feed-forward (FF) and bi-fan (BF) motif predictors for E. coli using multi-layer perceptron artificial neural networks (ANNs). The motif predictors were trained using a large dataset of gene expression data; the collection of motifs was extracted from the E. coli TRN. Each network motif was mapped to a vector of correlations which were computed using the gene expression profile of the elements in the motif. Thus, by combining network structural information with transcriptome data, FF and BF predictors were able to classify with a high precision of 83% and 96%, respectively, and with a high recall of 86% and 97%, respectively. These results were found when motifs were represented using different types of correlations together, i.e., Pearson, Spearman, Kendall, and partial correlation. We then applied the best predictors to hypothesize new regulations for 16 operons involved with multidrug resistance (MDR) efflux pumps, which are considered as a major bacterial mechanism to fight antimicrobial agents. As a result, the motif predictors assigned new transcription factors for these MDR proteins, turning them into high-quality candidates to be experimentally tested. CONCLUSION: The motif predictors presented herein can be used to identify novel regulatory interactions by using microarray data. The presentation of an example motif to predictors will make them categorize whether or not the example motif is a BF, or whether or not it is an FF. This approach is useful to find new "pieces" of the TRN, when inspecting the regulation of a small set of operons. Furthermore, it shows that correlations of expression data can be used to discriminate between elements that are arranged in structural motifs and those in random sets of transcripts.


Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Membrana Transportadoras/genética , Transcrição Gênica , Bases de Dados de Ácidos Nucleicos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Redes Neurais de Computação , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...