Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005457

RESUMO

Brushless synchronous machines (BSMs) are replacing conventional synchronous machines with static excitation in generation facilities due to the absence of sparking and lower maintenance. However, this excitation system makes measuring electric parameters in the rotor challenging. It is highly difficult to detect ground faults, which are the most common type of electrical fault in electric machines. In this paper, a ground fault detection method for BSMs is proposed. It is based on an inductive AC/DC rotating current sensor installed in the shaft. In the case of a ground fault in the rotating parts of the BSM, a fault current will flow through the rotor's sensor, inducing voltage in its stator. By analyzing the frequency components of the induced voltage, the detection of a ground fault in the rotating elements is possible. The ground faults detection method proposed covers the whole rotor and discerns between DC and AC sides. This method does not need any additional power source, slip ring, or brush, which is an important advantage in comparison with the existing methods. To corroborate the detection method, experimental tests have been performed using a prototype of this sensor connected to laboratory synchronous machines, achieving satisfactory results.

2.
Materials (Basel) ; 12(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795158

RESUMO

The presence of volatile organic compounds in groundwater is a major concern when it is used as a drinking water source because many of these compounds can adversely affect human health. This work reports on the preparation and characterization of white and red Brazilian São Simão's kaolinite-TiO2 nanocomposites and their use as catalysts in the photochemical degradation of toluene, a significant volatile organic compound. The nanocomposites were prepared by a sol-gel procedure, using titanium bis(triethanolaminate)diisopropoxide as a precursor. Thermal treatments of the nanocomposites led to different polymorphic titania phases, while the clay changed from kaolinite to metakaolinite. This structural evolution strongly affected the photocatalytic degradation behavior-all the solids efficiently degraded toluene and the solid calcined at 400 °C, formed by kaolinite and anatase, showed the best behavior (90% degradation). On extending the photochemical treatment up to 48 h, high mineralization levels were reached. The advantage of photodegradation using the nanocomposites was confirmed by comparing the results from isolated components (titanium dioxide and kaolinite) to observe that the nanocomposites displayed fundamental importance to the photodegradation pathways of toluene.

3.
Materials (Basel) ; 12(6)2019 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-30909647

RESUMO

In this paper, two concrete mixtures of plain concrete (PC) and steel fiber-reinforced high-performance concrete (SFRC) have been scanned in order to analyze the variation of the pore morphology during the first curing week. Six cylinders of 45.2-mm diameter 50-mm height were performed. All of the specimens were kept in a curing room at 20 °C and 100% humidity. A computed tomography (CT) scan was used to observe the internal voids of the mixtures, and the data were analyzed using digital image processing (DIP) software, which identified and isolated each individual void in addition to extracting all of their geometrical parameters. The results revealed that the SFRC specimens showed a greater porosity than the PC ones. Moreover, the porosity increased over time in the case of SFRC, while it remained almost constant in the case of PC. The porosity increased with the depth in all cases, and the lowest porosity was observed in the upper layer of the specimens, which is the one that was in contact with the air. The analysis of the results showed that the fibers provided additional stiffness to the cement paste, which was especially noticeable during this first curing week, resulting in an increasing of the volume of the voids and the pore size, as well as a reduction in the shape factor of the voids, among other effects.

4.
Micron ; 118: 22-34, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30572189

RESUMO

Over the past two decades, immense research efforts at a global level have extended CT-Scan technology across several engineering fields. The state-of-the-art of the most relevant research related to the use of CT-Scanning is presented in this paper, which explores microstructural studies of materials used in various fields of engineering, with especial emphasis on concrete technology. Its main aim is to present the range of new applications, in addition to the conventional uses of CT-Scan technology. Based on X-ray absorption, CT generates a visual display of the internal microstructure of a material at micro-range resolutions. In addition to its well-known usage in medicine, the current fields of application of this technology are very extensive. For example, CT is now an essential tool in paleontology that can reveal the internal structure of ancient relics without damaging (in many cases) unique specimens. It is extremely useful in material engineering, when analyzing the internal microstructure of the new and/or improved materials, because the images it generates can then be used to modify the material and further improve its macroscopic behavior. Mechanical engineers use it both in the analysis of internal flaws (i.e. voids, cracks, joints, and planes of weakness) in metals and in the study of composite materials. Likewise, its use among civil engineers extends to microstructural studies of rock and minerals (crack patterns, joints, voids, etc.). The advantages of this powerful tool are similar in concrete technology, because the macroscopic response of concrete components, as with so many other materials, is strongly related to the internal microstructure of the matrix and its internal flaws.

5.
Sensors (Basel) ; 18(4)2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29587380

RESUMO

The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation.

6.
Materials (Basel) ; 10(8)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763024

RESUMO

A montmorillonite has been intercalated with Al3+ polycations, using concentrated solutions and clay mineral dispersions. The reaction has been assisted by microwave radiation, yielding new intercalated solids and leading to Al-pillared solids after their calcination at 500 °C. The solids were characterized by elemental chemical analysis, X-ray diffraction, FTIR spectroscopy, thermal analyses, and nitrogen adsorption. The evolution of the properties of the materials was discussed as a function of the preparation conditions. Microwave treatment for 2.5 min provided correctly pillared solids.

7.
ACS Appl Mater Interfaces ; 7(20): 10853-62, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25938521

RESUMO

This study aimed to assess the capacity of saponite modified with n-hexadecyltrimethylammonium bromide (CTAB) and/or 3-aminopropyltriethoxysilane (APTS) to adsorb and remove caffeine from aqueous solutions. Powder X-ray diffraction (PXRD) revealed increased basal spacing in the modified saponites. Small-angle X-ray scattering (SAXS) confirmed the PXRD results; it also showed how the different clay layers were stacked and provided information on the swelling of natural saponite and of the saponites functionalized with CTAB and/or APTS. Thermal analyses, infrared spectroscopy, scanning electron microscopy, element chemical analysis, and textural analyses confirmed functionalization of the natural saponite. The maximum adsorption capacity at equilibrium was 80.54 mg/g, indicating that the saponite modified with 3-aminopropyltriethoxysilane constitutes an efficient and suitable caffeine adsorbent.


Assuntos
Silicatos de Alumínio/química , Cafeína/isolamento & purificação , Compostos Orgânicos/química , Purificação da Água/métodos , Difração de Raios X/métodos , Adsorção , Cafeína/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Poluentes Químicos da Água/isolamento & purificação
8.
J Hazard Mater ; 293: 21-9, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25819990

RESUMO

Liquid phase catalytic degradation of sulfanilamide with H2O2 was carried out in the presence of Fe,Al/M-pillared clay (Fe,Al/M-MM, M=Na(+), Ca(2+) and Ba(2+)) as heterogeneous Fenton type catalyst. Fe,Al/M-MMs were prepared by swelling of layered aluminosilicate (90-95 wt.% montmorillonite) from a bed located in Mukhortala (Buryatia, Russia) in Na(+), Ca(2+) and Ba(2+) forms by means of the exchange of these cations with bulky Fe,Al-polyoxocations prepared at Al/Fe=10/1 and OH/(Al+Fe)=2.0, and then calcinated at 500°C. XRD method and chemical analysis demonstrated that the rate of crystalline swelling was dependent on the interlayer cations and decreased in the order: Fe,Al-/Na-MM>Fe,Al/Ca-MM>Fe,Al/Ba-MM. It was found that the catalytic properties of Fe,Al/M-MMs depended on the type of exchangeable cations. The effect of the H2O2/sulfanilamide molar ratio, the catalyst content, the reaction temperature and the reaction pH on the removal rate of sulfanilamide has been studied in the presence of Fe,Al/Na-MM. The catalyst can be applied for degradation of sulfanilamide with H2O2 for at least three successive cycles without loss of activity. HPLC analyses pointed out that the main degradation intermediate products were sulfanilic acid, benzenesulfonic acid, p-benzoquinone and aliphatic carboxylic acids.


Assuntos
Silicatos de Alumínio/química , Metais/química , Sulfanilamidas/química , Poluentes Químicos da Água/química , Catálise , Argila , Peróxido de Hidrogênio/química , Sulfanilamida
9.
ACS Appl Mater Interfaces ; 4(5): 2525-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22530552

RESUMO

The catalytic efficiency of takovite-aluminosilicate-chromium catalysts obtained by adsorption of Cr(3+) ions from aqueous solutions by a takovite-aluminosilicate nanocomposite adsorbent is reported. The adsorbent was synthesized by the coprecipitation method. The catalytic activity of the final Cr-catalysts depended on the amount of adsorbed chromium. (Z)-cyclooctene conversion up to 90% with total selectivity for the epoxide was achieved when the oxidation was carried out with hydrogen peroxide, at room temperature. After five consecutive runs, the catalysts maintained high activity, although after the sixth reuse, the epoxide yields strongly decreased to 35%. The catalysts were also efficient for cyclohexane oxidation, reaching up to 18% conversion, with cyclohexanone/cyclohexanol selectivity close to 1.2. On the whole, their use as catalysts gives a very interesting application for the solids obtained by adsorption of a contaminant cation such as Cr(3+).

10.
ACS Appl Mater Interfaces ; 3(4): 1311-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21446749

RESUMO

Luminescent hybrid materials derived from kaolinite appear as promising materials for optical applications due to their specific properties. The spectroscopic behavior of terbium picolinate complexes covalently grafted on kaolinite and the influence of the secondary ligand and thermal treatment on luminescence are reported. The resulting materials were characterized by thermal analysis, element analysis, X-ray diffraction, infrared absorption spectroscopy, and photoluminescence. The thermogravimetric curves indicated an enhancement in the thermal stability up to 300 °C for the lanthanide complexes covalently grafted on kaolinite, with respect to the isolated complexes. The increase in the basal spacing observed by X-ray diffraction confirmed the insertion of the organic ligands into the basal space of kaolinite, involving the formation of a bond between Al-OH and the carboxylate groups, as evidenced by infrared spectroscopy. The luminescent hybrid material exhibited a stronger characteristic emission of Tb(3+) compared to the isolated complex. The excitation spectra displayed a broad band at 277 nm, assigned to a ligand-to-metal charge transfer, while the emission spectra presented bands related to the electronic transitions characteristic of the Tb(3+) ion from the excited state (5)D(4) to the states (7)F(J) (J=5, 4, and 3), with the 4→5 transition having high intensity with green emission.

11.
J Colloid Interface Sci ; 341(1): 186-93, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19833345

RESUMO

Functionalization of Brazilian São Simão kaolinite and Spanish Yunclillos saponite with the alkoxysilanes 3-aminopropyltriethoxysilane and 3-mercaptopropyltrimethoxysilane is reported. The resulting hybrids were characterized by X-ray diffraction, thermal analysis, infrared absorption spectroscopy, and scanning electron microscopy, which demonstrated the effectiveness of the interlamellar grafting process. The X-ray diffractograms revealed incorporation of the alkoxide molecules into the interlayer space of the clays. The displacement of the stretching bands of interlayer hydroxyls in the infrared spectra of the modified kaolinites and the increased intensity of the Mg-OH vibrations in the spectra of the modified saponites confirmed the functionalization of the clays. The thermal behavior of the organoclays confirmed the stability of the hybrids, which was dependent on the clay used for preparation of the materials.

12.
J Colloid Interface Sci ; 335(2): 210-5, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19433329

RESUMO

This paper presents the results of the functionalization of Brazilian São Simão kaolinite with pyridine-2-carboxylic and pyridine-2,6-dicarboxylic acids. The functionalization involved refluxing of the pyridine-carboxylic acid in the presence of kaolinite previously intercalated with dimethyl sulfoxide; both acids effectively displaced dimethyl sulfoxide from the clay interlayer. The resulting materials were characterized by X-ray diffraction, thermal analysis, infrared absorption spectroscopy, and C and N elemental analysis. The X-ray diffractograms revealed the incorporation of the acid molecules into the interlayer space of kaolinite. The thermogravimetric curves of the kaolinite samples functionalized with the pyridine-carboxylic acids indicated that the materials were thermally stable up to 300 degrees C. The displacements of the bands due to interlayer hydroxyls in the infrared absorption spectra also confirmed the functionalization of the kaolinite with the pyridine-carboxylic acids.

13.
ACS Appl Mater Interfaces ; 1(11): 2667-78, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20356141

RESUMO

The preparation, characterization, and application in oxidation reactions of new biomimetic catalysts are reported. Brazilian Sao Simao kaolinite clay has been functionalized with [meso-tetrakis(pentafluorophenyl)porphinato]iron(III), Fe(TPFPP). To obtain the functionalized clay, the natural clay was purified by dispersion-sedimentation, expanded by insertion of dimethyl sulfoxide (DMSO), and functionalized with amino groups by substitution of DMSO with ethanolamine. These previous steps allowed clay functionalization with Fe(TPFPP), leading to a layered material with a basal spacing of 10.73 A. Clay functionalization with the porphyrin was confirmed by formation of the secondary amine, as demonstrated by FTIR bands at 3500-3700 cm(-1). UV-vis spectroscopy revealed a red shift in the Soret band of the iron porphyrin in the functionalized material as compared to the parent iron porphyrin catalyst in solution, indicating Fe(III)P --> Fe(II)P reduction. The catalytic performance of the functionalized clay was evaluated in the epoxidation of cyclooctene, with complete selectivity for the epoxide (100% epoxide yield), and ketonization of cyclohexane, cyclohexanone being the major product. The novel catalyst was also evaluated in the Baeyer-Villiger (BV) oxidation of cyclohexanone, with 85% conversion of cyclohexanone in epsilon-caprolactone, with total selectivity to epsilon-caprolactone.

14.
Langmuir ; 21(6): 2129-36, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15751999

RESUMO

Four metakaolins were prepared by heating a Spanish kaolin at 600, 700, 800, and 900 degrees C for 10 h. Following preliminary optimization, these metakaolins were acid activated in 6 M hydrochloric acid at 90 degrees C for 6 h; the samples calcined at 600, 700, and 800 degrees C produced the highest surface area solids and were selected for further study. Variable-temperature diffuse reflectance infrared Fourier transform spectroscopy analysis of the resulting acid-activated metakaolins (AAMKs) identified a wide range of hydrogen bond strengths in adsorbed water at room temperature. Above 300 degrees C it was possible to fit the broad hydroxyl stretching band to seven contributing components at 3730, 3700, 3655, 3615, 3583, 3424, and 3325 cm(-1). As the sample temperature was increased, the 3730 cm(-1) band increased in intensity as the water hydrogen bonded to AlOHAl was thermally desorbed. The other six bands decreased in intensity. The spectra of adsorbed pyridine indicated the presence of both Brönsted and Lewis acid sites on the surface of the air-dried AAMKs. Preheating the AAMK at 200 degrees C prior to pyridine sorption reduced the number of Brönsted acid sites and increased the number of thermally stable Lewis acid sites. A reduction in the amount of adsorbed pyridine after pretreating the AAMK at 400 degrees C was tentatively attributed to a reduction in surface area. This was reflected in fewer thermally stable Lewis acid sites in the AAMK pretreated at 400 degrees C compared to the number present in the sample pretreated at 200 degrees C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...