Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioelectrochemistry ; 157: 108632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38181592

RESUMO

Electrochemical biosensors are known for their high sensitivity, selectivity, and low cost. Recently, they have gained significant attention and became particularly important as promising tools for the detection of COVID-19 biomarkers, since they offer a rapid and accurate means of diagnosis. Biorecognition strategies are a crucial component of electrochemical biosensors and determine their specificity and sensitivity based on the interaction of biological molecules, such as antibodies, enzymes, and DNA, with target analytes (e.g., viral particles, proteins and genetic material) to create a measurable signal. Different biorecognition strategies have been developed to enhance the performance of electrochemical biosensors, including direct, competitive, and sandwich binding, alongside nucleic acid hybridization mechanisms and gene editing systems. In this review article, we present the different strategies used in electrochemical biosensors to target SARS-CoV-2 and other COVID-19 biomarkers, as well as explore the advantages and disadvantages of each strategy and highlight recent progress in this field. Additionally, we discuss the challenges associated with developing electrochemical biosensors for clinical COVID-19 diagnosis and their widespread commercialization.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Biomarcadores , Técnicas Eletroquímicas
2.
Vet Res Commun ; 48(2): 1097-1109, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114776

RESUMO

Picobirnavirus (PBV) is a family of non-enveloped double-stranded RNA viruses with bisegmented genomes. Segment 1 encodes the capsid protein and segment 2 encodes RNA-dependent RNA polymerase. They exhibit high genomic heterogeneity and infect a wide range of vertebrate hosts, including humans. The objective of this study was to expand our knowledge of the circulation of PBV in free-living animals from two regions (Brazil and Argentina) of the Atlantic Forest. Fecal samples were analyzed from free-living animals: tapir, brocket deer, peccary, and different species of rodents and marsupials. A total of 133 samples were collected and analyzed by RT-PCR, of which 44 (33.08%) were PBV-positive. Nine amplicons were sequenced, five species from Argentina and four from Brazil, and phylogenetic analysis was performed. The nucleotide and amino acid identities of the PBV strains detected in animals from Argentina and Brazil were between 66.3% and 82.5% and between 55.3% and 74.2%, respectively. The analysed strains presented conserved nucleotide blocks without distinction of the host species. The phylogenetic tree showed that PBV strains from Atlantic Forest animals belonging to genogroup I were grouped into different clusters, without defining groups according to host species (human or animal) or the geographical area of detection. This is the first study on PBV in free-living animals in the Atlantic Forest. Our analysis suggested that PBV strains can infect different animal species, leading to PBV transmission between animals and humans. This reinforces the hypothesis of previous crossover points in the ecology and evolution of heterologous PBV strains.


Assuntos
Cervos , Picobirnavirus , Infecções por Vírus de RNA , Animais , Humanos , Picobirnavirus/genética , Filogenia , Infecções por Vírus de RNA/veterinária , Fezes , Nucleotídeos
3.
Prev Vet Med ; 222: 106094, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103433

RESUMO

SARS-CoV-2 has caused 775 outbreaks in 29 animal species across 36 countries, including dogs, cats, ferrets, minks, non-human primates, white-tailed deer, and lions. Although transmission from owners to dogs has been extensively described, no study to date has also compared sheltered, foster home and owner dogs and associated risk factors. This study aimed to identify SARS-CoV-2 infection and anti-SARS-CoV-2 antibodies from sheltered, fostered, and owned dogs, associated with environmental and management risk factors. Serum samples and swabs were collected from each dog, and an epidemiological questionnaire was completed by the shelter manager, foster care, and owner. A total of 111 dogs, including 222 oropharyngeal and rectal swabs, tested negative by RT-qPCR. Overall, 18/89 (20.22%) dogs presented IgG antibodies against the N protein of SARS-CoV-2 by magnetic ELISA, while none showed a reaction to the Spike protein. SARS-CoV-2 antibodies showed an age-related association, with 4.16 chance of positivity in adult dogs when compared with young ones. High population density among dogs and humans, coupled with repeated COVID-19 exposure, emerged as potential risk factors in canine virus epidemiology. Dogs exhibited higher seropositivity rates in these contexts. Thus, we propose expanded seroepidemiological and molecular studies across species and scenarios, including shelter dogs.


Assuntos
COVID-19 , Doenças do Gato , Cervos , Doenças do Cão , Leões , Cães , Animais , Gatos , COVID-19/epidemiologia , COVID-19/veterinária , SARS-CoV-2 , Estudos Soroepidemiológicos , Furões , Anticorpos Antivirais , Vison , Doenças do Cão/epidemiologia
4.
Talanta Open ; 7: 100201, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36959870

RESUMO

To help meet the global demand for reliable and inexpensive COVID-19 testing and environmental analysis of SARS-CoV-2, the present work reports the development and application of a highly efficient disposable electrochemical immunosensor for the detection of SARS-CoV-2 in clinical and environmental matrices. The sensor developed is composed of a screen-printed electrode (SPE) array which was constructed using conductive carbon ink printed on polyethylene terephthalate (PET) substrate made from disposable soft drink bottles. The recognition site (Spike S1 Antibody (anti-SP Ab)) was covalently immobilized on the working electrode surface, which was effectively modified with carbon black (CB) and gold nanoparticles (AuNPs). The immunosensing material was subjected to a multi-technique characterization analysis using X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with elemental analysis via energy dispersive spectroscopy (EDS). The electrochemical characterization of the electrode surface and analytical measurements were performed using cyclic voltammetry (CV) and square-wave voltammetry (SWV). The immunosensor was easily applied for the conduct of rapid diagnoses or accurate quantitative environmental analyses by setting the incubation period to 10 min or 120 min. Under optimized conditions, the biosensor presented limits of detection (LODs) of 101 fg mL-1 and 46.2 fg mL-1 for 10 min and 120 min incubation periods, respectively; in addition, the sensor was successfully applied for SARS-CoV-2 detection and quantification in clinical and environmental samples. Considering the costs of all the raw materials required for manufacturing 200 units of the AuNP-CB/PET-SPE immunosensor, the production cost per unit is 0.29 USD.

5.
Adv Exp Med Biol ; 1383: 55-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587146

RESUMO

Propulsive gastrointestinal (GI) motility is critical for digestive physiology and host defense. GI motility is finely regulated by the intramural reflex pathways of the enteric nervous system (ENS). The ENS is in turn regulated by luminal factors: diet and the gut microbiota. The gut microbiota is a vast ecosystem of commensal bacteria, fungi, viruses, and other microbes. The gut microbiota not only regulates the motor programs of the ENS but also is critical for the normal structure and function of the ENS. In this chapter, we highlight recent research that has shed light on the microbial mechanisms of interaction with the ENS involved in the control of motility. Toll-like receptor signaling mechanisms have been shown to maintain the structural integrity of the ENS and the neurochemical phenotypes of enteric neurons, in part through the production of trophic factors including glia-derived neurotrophic factor. Microbiota-derived short-chain fatty acids and/or single-stranded RNA regulates the synthesis of serotonin in enterochromaffin cells, which are involved in the initiation of enteric reflexes, among other functions. Further evidence suggests a crucial role for microbial modulation of serotonin in maintaining the integrity of the ENS through enteric neurogenesis. Understanding the microbial pathways of enteric neural control sheds new light on digestive health and provides novel treatment strategies for GI motility disorders.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Microbiota , Microbioma Gastrointestinal/fisiologia , Serotonina/metabolismo , Sistema Nervoso Entérico/metabolismo , Neurônios/fisiologia , Motilidade Gastrointestinal/fisiologia
6.
J Pharm Biomed Anal ; 221: 115032, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36152488

RESUMO

The outstanding electronic properties of carbon black (CB) and its economic advantages have fueled its application as nanostructured electrode material for the development of new electrochemical sensors and biosensors. CB-based electrochemical sensing devices have been found to exhibit high surface area, fast charge transfer kinetics, and excellent functionalization. In the present work, we set forth a comprehensive review of the recent advances made in the development and application of CB-based electrochemical devices for pharmaceutical and biomedical analyses - from quantitative monitoring of drug formulations to clinical diagnoses - and the underlying challenges and constraints that need to be overcome. We also present a thorough discussion about the strategies and techniques employed in the development of new electrochemical sensing platforms and in the enhancement of their analytical properties and biocompatibility for anchoring active biomolecules, as well as the combination of these sensing devices with other materials aiming at boosting the performance and efficiency of the sensors.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Preparações Farmacêuticas , Fuligem
7.
Brain Behav Immun ; 102: 266-278, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259427

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract. IBD are associated with a high prevalence of cognitive, behavioural and emotional comorbidities, including anxiety and depression. The link between IBD and the development of behavioural comorbidities is poorly understood. As the intestinal microbiota profoundly influences host behaviour, we sought to determine whether the altered gut microbiota associated with intestinal inflammation contributes to the development of behavioural abnormalities. Using the dextran sulphate sodium (DSS) model of colitis, we characterized intestinal inflammation, behaviour (elevated plus maze and tail suspension test) and the composition of the microbiota in male mice. Cecal contents from colitic mice were transferred into germ-free (GF) or antibiotic (Abx)-treated mice, and behaviour was characterized in recipient mice. Gene expression was measured using qPCR. DSS colitis was characterized by a significant reduction in body weight and an increase in colonic inflammatory markers. These changes were accompanied by increased anxiety-like behaviour, an altered gut microbiota composition, and increased central Tnf expression. Transfer of the cecal matter from colitic mice induced similar behavioural changes in both GF and Abx-treated recipient mice, with no signs of colonic or neuroinflammation. Upon characterization of the microbiota in donor and recipient mice, specific taxa were found to be associated with behavioural changes, notably members of the Lachnospiraceae family. Behavioural abnormalities associated with intestinal inflammation are transmissible via transfer of cecal matter, suggesting that alterations in the composition of the gut microbiota play a key role in driving behavioural changes in colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Microbiota , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Microbiome ; 9(1): 210, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702353

RESUMO

BACKGROUND: The intestinal microbiota plays an important role in regulating gastrointestinal (GI) physiology in part through interactions with the enteric nervous system (ENS). Alterations in the gut microbiome frequently occur together with disturbances in enteric neural control in pathophysiological conditions. However, the mechanisms by which the microbiota regulates GI function and the structure of the ENS are incompletely understood. Using a mouse model of antibiotic (Abx)-induced bacterial depletion, we sought to determine the molecular mechanisms of microbial regulation of intestinal function and the integrity of the ENS. Spontaneous reconstitution of the Abx-depleted microbiota was used to assess the plasticity of structure and function of the GI tract and ENS. Microbiota-dependent molecular mechanisms of ENS neuronal survival and neurogenesis were also assessed. RESULTS: Adult male and female Abx-treated mice exhibited alterations in GI structure and function, including a longer small intestine, slower transit time, increased carbachol-stimulated ion secretion, and increased intestinal permeability. These alterations were accompanied by the loss of enteric neurons in the ileum and proximal colon in both submucosal and myenteric plexuses. A reduction in the number of enteric glia was only observed in the ileal myenteric plexus. Recovery of the microbiota restored intestinal function and stimulated enteric neurogenesis leading to increases in the number of enteric glia and neurons. Lipopolysaccharide (LPS) supplementation enhanced neuronal survival alongside bacterial depletion, but had no effect on neuronal recovery once the Abx-induced neuronal loss was established. In contrast, short-chain fatty acids (SCFA) were able to restore neuronal numbers after Abx-induced neuronal loss, demonstrating that SCFA stimulate enteric neurogenesis in vivo. CONCLUSIONS: Our results demonstrate a role for the gut microbiota in regulating the structure and function of the GI tract in a sex-independent manner. Moreover, the microbiota is essential for the maintenance of ENS integrity, by regulating enteric neuronal survival and promoting neurogenesis. Molecular determinants of the microbiota, LPS and SCFA, regulate enteric neuronal survival, while SCFA also stimulates neurogenesis. Our data reveal new insights into the role of the gut microbiota that could lead to therapeutic developments for the treatment of enteric neuropathies. Video abstract.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Animais , Sistema Nervoso Entérico/fisiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Intestino Delgado , Masculino , Camundongos , Neuroglia , Neurônios/fisiologia
9.
Rev. epidemiol. controle infecç ; 11(3): 174-180, jul.-set. 2021. ilus
Artigo em Inglês, Português | LILACS | ID: biblio-1396825

RESUMO

Background and Objectives: reproductive tract infections are considered an important demand for women's health, due to their high prevalence in the population and the consequences they can cause, such as premature birth, infertility and cervical cancer. There are still women who do not undergo cytopathological examination, capable of preventing these infections, either due to lack of guidance or opportunity, such as quilombola women. This study aimed to identify factors associated with cervicovaginal infections in quilombola women from Feira de Santana, Bahia. Methods: a descriptive study, carried out in a transversal way and with a quantitative approach. Data collection was carried out from November 2019 to January 2020, with the application of an anamnesis form prepared by the team, with variables used in other studies, such as risk factors. Bivariate analysis was performed to obtain prevalence ratios (PR) between infections and the characteristics found. Results: a total of 82 women were studied, with an average age of 45.3 years. The main vaginal infections were caused by Gardnerella vaginalis (17.1%), Trichomonas vaginalis (8.5%), Cocci (8.5%), Candida spp. (6.2%) and Fusobacterium spp. (1.2%). In 88.2% of infected women, inflammation was present. Conclusion: the results obtained in this study showed a correlation between the inflammatory process in women and the presence of some infection. With regard to infections, there was a higher prevalence in women with low education, without a steady partner and who did not undergo regular preventive examination.(AU)


Justificativa e Objetivos: as infecções do trato reprodutivo são consideradas uma demanda importante para a saúde da mulher, devido à sua alta prevalência na população e às consequências que podem causar, como parto prematuro, infertilidade e câncer do colo do útero. Ainda há mulheres que não realizam exame citopatológico, capaz de prevenir essas infecções, seja por falta de orientação ou oportunidade, como as mulheres quilombolas. Este estudo teve como objetivo identificar fatores associados a infecções cervicovaginais em mulheres quilombolas de Feira de Santana, Bahia. Métodos: estudo descritivo, realizado de forma transversal e com abordagem quantitativa. A coleta de dados foi realizada no período de novembro de 2019 a janeiro de 2020, com a aplicação de uma ficha de anamnese elaborada pela equipe, com variáveis utilizadas em outros estudos, como fatores de risco. A análise bivariada foi realizada para obter razões de prevalência (RP) entre as infecções e as características encontradas. Resultados: foram estudadas 82 mulheres, com média de idade de 45,3 anos. As principais infecções vaginais foram causadas por Gardnerella vaginalis (17,1%), Trichomonas vaginalis (8,5%), Cocci (8,5%), Candida spp. (6,2%) e Fusobacterium spp. (1,2%). Em 88,2% das mulheres infectadas, a inflamação estava presente. Conclusão: os resultados obtidos neste estudo mostraram uma correlação entre o processo inflamatório em mulheres e a presença de alguma infecção. No que se refere às infecções, houve maior prevalência em mulheres com baixa escolaridade, sem companheiro fixo e que não realizavam exame preventivo regular.(AU)


Justificación y Objetivos: las infecciones del aparato reproductor son consideradas una demanda importante para la salud de la mujer, por su alta prevalencia en la población y las consecuencias que pueden ocasionar, como parto prematuro, infertilidad y cáncer de cuello uterino. Todavía hay mujeres que no se hacen un examen citopatológico, capaz de prevenir estas infecciones, ya sea por falta de orientación o de oportunidad, como las mujeres quilombolas. Este estudio tuvo como objetivo identificar los factores asociados a las infecciones cervicovaginales en mujeres quilombolas de Feira de Santana, Bahia. Métodos: estudio descriptivo, realizado de forma transversal y con enfoque cuantitativo. La recolección de datos se realizó de noviembre de 2019 a enero de 2020, con la aplicación de un formulario de anamnesis elaborado por el equipo, con variables utilizadas en otros estudios, como los factores de riesgo. Se realizó análisis bivariado para obtener razones de prevalencia (RP) entre las infecciones y las características encontradas. Resultados: se estudiaron un total de 82 mujeres, con una edad promedio de 45,3 años. Las principales infecciones vaginales fueron causadas por Gardnerella vaginalis (17,1%), Trichomonas vaginalis (8,5%), Cocci (8,5%), Candida spp. (6,2%) y Fusobacterium spp. (1,2%). En el 88,2% de las mujeres infectadas hubo inflamación. Conclusión: los resultados obtenidos en este estudio mostraron una correlación entre el proceso inflamatorio en la mujer y la presencia de alguna infección. En cuanto a las infecciones, hubo mayor prevalencia en mujeres con baja escolaridad, sin pareja estable y que no realizaban examen preventivo periódico.(AU)


Assuntos
Humanos , Feminino , Neoplasias do Colo do Útero , Teste de Papanicolaou , Saúde das Minorias Étnicas , Quilombolas , Esfregaço Vaginal , Fatores de Risco
10.
Brain Behav Immun ; 98: 317-329, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34461234

RESUMO

The intestinal microbiota plays an important role in regulating brain functions and behaviour. Microbiota-dependent changes in host physiology have been suggested to be key contributors to psychiatric conditions. However, specific host pathways modulated by the microbiota involved in behavioural control are lacking. Here, we assessed the role of the aryl hydrocarbon receptor (Ahr) in modulating microbiota-related alterations in behaviour in male and female mice after antibiotic (Abx) treatment. Mice of both sexes were treated with Abx to induce bacterial depletion. Mice were then tested in a battery of behavioural tests, including the elevated plus maze and open field tests (anxiety-like behaviour), 3 chamber test (social preference), and the tail suspension and forced swim tests (despair behaviour). Behavioural measurements in the tail suspension test were also performed after microbiota reconstitution and after administration of an Ahr agonist, ß-naphthoflavone. Gene expression analyses were performed in the brain, liver, and colon by qPCR. Abx-induced bacterial depletion did not alter anxiety-like behaviour, locomotion, or social preference in either sex. A sex-dependent effect was observed in despair behaviour. Male mice had a reduction in despair behaviour after Abx treatment in both the tail suspension and forced swim tests. A similar alteration in despair behaviour was observed in Ahr knockout mice. Despair behaviour was normalized by either microbiota recolonization or Ahr activation in Abx-treated mice. Ahr activation by ß-naphthoflavone was confirmed by increased expression of the Ahr-target genes Cyp1a1, Cyp1b1, and Ahrr. Our results demonstrate a role for Ahr in mediating the behaviours that are regulated by the crosstalk between the intestinal microbiota and the host. Ahr represents a novel potential modulator of behavioural conditions influenced by the intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Animais , Antibacterianos/farmacologia , Citocromo P-450 CYP1A1 , Feminino , Masculino , Camundongos , Camundongos Knockout
11.
Talanta ; 222: 121539, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167247

RESUMO

The present study reports the development of graphite pencil electrode modified with palladium nanoparticles (PdNPs) and its application as an electrochemical sensor for the simultaneous detection of direct yellow 50, tryptophan, carbendazim and caffeine in river water and synthetic urine samples. The combination involving the conductive surface of the graphite pencil electrode (GPE) and the enlargement of the surface area caused by the use of palladium nanoparticles (PdNPs) led to the improvement of the analytical performance of the proposed device. The surface of the GPE-PdNPs was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The charge transfer kinetics of the electrode was evaluated based on the electrochemical analysis of the potassium ferricyanide redox probe. Using square wave voltammetry (SWV), well-defined and fully resolved anodic peaks were detected for the analytes, with peak-to-peak potential separation not less than 200 mV. Under optimised conditions, the following linear range concentrations were obtained: 0.99-9.9 µmol L-1 for direct yellow 50; 1.2-12 µmol L-1 for tryptophan; 0.20-1.6 µmol L-1 for carbendazim; and 25-190 µmol L-1 for caffeine. The sensor showed good sensitivity, repeatability, and stability. The device was successfully applied for the determination of analytes in urine and river water samples, where recovery rates close to 100% were obtained. Due to its low cost and reusability by simple polishing, the sensor has strong potential to be used as an electrochemical sensor for the determination of different analytes.


Assuntos
Grafite , Nanopartículas Metálicas , Compostos Azo , Benzimidazóis , Cafeína , Carbamatos , Técnicas Eletroquímicas , Eletrodos , Naftalenos , Paládio , Triptofano
12.
J Mol Model ; 26(11): 309, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33084954

RESUMO

In this work, we present a computational investigation on the photoexcitation of indigo carmine (IC). Physical insights regarding IC photoexcitation and photolysis were obtained from a fundamental perspective through quantum chemistry computations. Density functional theory (DFT) was used to investigate the ground state while its time-dependent formalism (TD-DFT) was used for probing excited state properties, such as vertical excitation energies, generalized oscillator strengths (GOS), and structures. All the computations were undertaken using two different approaches: M06-2X/6-311+G(d,p) and CAM-B3LYP/6-311+G(d,p), in water. Results determined using both methods are in systematic agreement. For instance, the first singlet excited state was found at 2.28 eV (with GOS = 0.4730) and 2.19 eV (GOS = 0.4695) at the TD-DFT/CAM-B3LYP/6-311+G(d,p) and TD-DFT/M06-2X/6-311+G(d,p) levels of theory, respectively. Excellent agreement was observed between the computed and the corresponding experimental UV-Vis spectra. Moreover, results suggest IC undergoes photodecomposition through excited state chemical reaction rather than via a direct photolysis path. To the best of our knowledge, this work is the first to tackle the photoexcitation, and its potential connections to photodegradation, of IC from a fundamental chemical perspective, being presented with expectations to motivate further studies.

13.
Brain Behav Immun ; 89: 224-232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592863

RESUMO

Patients with rheumatoid arthritis experience chronic pain, depression and fatigue, even when inflammation of the joints is well controlled. To study the relationship between arthritis, depression, and sustained pain when articular inflammation is no longer observed, we tested the hypothesis that brain TNF drives post-inflammation depression-like behavior and persistent pain in experimental arthritis. The murine model of antigen-induced arthritis (AIA) was used to evaluate the effects of knee inflammation on sustained pain and depression-like behavior. We measured joint pain using an automated dynamic plantar algesiometer and depression-like behavior with the tail suspension test. Cytokines were measured by Luminex assay and ELISA. TNF in the brain was blocked by intracerebroventricular injection of anti-TNF antibodies. Histological damage and elevated levels of cytokines were observed in the knee 24 h after antigen treatment, but not at 13 days. Reduced pain thresholds were seen 24 h and 13 days after treatment. Depression-like behavior was observed on day 13. Treatment with the antidepressant imipramine reduced both depression-like behavior and persistent pain. However, blocking joint pain with the analgesic dipyrone did not alter depression-like behavior. Elevated levels of TNF, CCL2, and CXCL-1 were observed in the hippocampus 24 h after treatment, with TNF remaining elevated at day 13. Intracerebroventricular infusion of an anti-TNF antibody blocked depression-like behavior and reduced persistent pain. We have demonstrated that depression-like behavior and pain is sustained in AIA mice after the resolution of inflammation. These changes are associated with elevated levels of TNF in the hippocampus and are dependent upon brain TNF. The findings reveal an important mechanistic link between the expression of chronic pain and depression in experimental arthritis. Furthermore, they suggest treating depression in rheumatoid arthritis may positively impact other debilitating features of this condition.


Assuntos
Artrite Experimental , Fator de Necrose Tumoral alfa , Animais , Artrite Experimental/complicações , Encéfalo/metabolismo , Depressão , Humanos , Inflamação , Camundongos , Dor , Fator de Necrose Tumoral alfa/metabolismo
14.
Nat Commun ; 11(1): 2577, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444671

RESUMO

The gut microbiome consists of a multi-kingdom microbial community. Whilst the role of bacteria as causal contributors governing host physiological development is well established, the role of fungi remains to be determined. Here, we use germ-free mice colonized with defined species of bacteria, fungi, or both to differentiate the causal role of fungi on microbiome assembly, immune development, susceptibility to colitis, and airway inflammation. Fungal colonization promotes major shifts in bacterial microbiome ecology, and has an independent effect on innate and adaptive immune development in young mice. While exclusive fungal colonization is insufficient to elicit overt dextran sulfate sodium-induced colitis, bacterial and fungal co-colonization increase colonic inflammation. Ovalbumin-induced airway inflammation reveals that bacterial, but not fungal colonization is necessary to decrease airway inflammation, yet fungi selectively promotes macrophage infiltration in the airway. Together, our findings demonstrate a causal role for fungi in microbial ecology and host immune functionality, and therefore prompt the inclusion of fungi in therapeutic approaches aimed at modulating early life microbiomes.


Assuntos
Fungos/fisiologia , Microbioma Gastrointestinal/fisiologia , Sistema Imunitário/crescimento & desenvolvimento , Intestinos/microbiologia , Animais , Fenômenos Fisiológicos Bacterianos , Colite/induzido quimicamente , Colite/microbiologia , Sulfato de Dextrana/toxicidade , Fezes/microbiologia , Feminino , Fungos/isolamento & purificação , Microbioma Gastrointestinal/imunologia , Vida Livre de Germes , Humanos , Inflamação/induzido quimicamente , Inflamação/microbiologia , Metaboloma , Camundongos Endogâmicos C57BL , Ovalbumina/toxicidade
15.
Cell Mol Gastroenterol Hepatol ; 10(2): 225-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289500

RESUMO

BACKGROUND & AIMS: Despite achieving endoscopic remission, more than 20% of inflammatory bowel disease patients experience chronic abdominal pain. These patients have increased rectal transient receptor potential vanilloid-1 receptor (TRPV1) expression, a key transducer of inflammatory pain. Because inflammatory bowel disease patients in remission exhibit dysbiosis and microbial manipulation alters TRPV1 function, our goal was to examine whether microbial perturbation modulated transient receptor potential function in a mouse model. METHODS: Mice were given dextran sodium sulfate (DSS) to induce colitis and were allowed to recover. The microbiome was perturbed by using antibiotics as well as fecal microbial transplant (FMT). Visceral and somatic sensitivity were assessed by recording visceromotor responses to colorectal distention and using hot plate/automated Von Frey tests, respectively. Calcium imaging of isolated dorsal root ganglia neurons was used as an in vitro correlate of nociception. The microbiome composition was evaluated via 16S rRNA gene variable region V4 amplicon sequencing, whereas fecal short-chain fatty acids (SCFAs) were assessed by using targeted mass spectrometry. RESULTS: Postinflammatory DSS mice developed visceral and somatic hyperalgesia. Antibiotic administration during DSS recovery induced visceral, but not somatic, hyperalgesia independent of inflammation. FMT of postinflammatory DSS stool into antibiotic-treated mice increased visceral hypersensitivity, whereas FMT of control stool reversed antibiotics' sensitizing effects. Postinflammatory mice exhibited both increased SCFA-producing species and fecal acetate/butyrate content compared with controls. Capsaicin-evoked calcium responses were increased in naive dorsal root ganglion neurons incubated with both sodium butyrate/propionate alone and with colonic supernatants derived from postinflammatory mice. CONCLUSIONS: The microbiome plays a central role in postinflammatory visceral hypersensitivity. Microbial-derived SCFAs can sensitize nociceptive neurons and may contribute to the pathogenesis of postinflammatory visceral pain.


Assuntos
Colite Ulcerativa/complicações , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Dor Visceral/imunologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/microbiologia , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Nociceptividade , Nociceptores/imunologia , Nociceptores/metabolismo , Canais de Cátion TRPV/metabolismo , Dor Visceral/microbiologia
16.
PLoS One ; 15(2): e0229415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32109945

RESUMO

Avian adenoviruses (AdVs) are a very diverse group of pathogens causing diseases in poultry and wild birds. Wild birds, endangered by habitat loss and habitat fragmentation in the tropical forests, are recognised to play a role in the transmission of various AdVs. In this study, two novel, hitherto unknown AdVs were described from faecal samples of smooth-billed ani and tropical screech owl. The former was classified into genus Aviadenovirus, the latter into genus Atadenovirus, and both viruses most probably represent new AdV species as well. These results show that there is very limited information about the biodiversity of AdVs in tropical wild birds, though viruses might have a major effect on the population of their hosts or endanger even domesticated animals. Surveys like this provide new insights into the diversity, evolution, host variety, and distribution of avian AdVs.


Assuntos
Infecções por Adenoviridae/veterinária , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Aves/virologia , DNA Viral/análise , Estrigiformes/virologia , Adenoviridae/classificação , Infecções por Adenoviridae/virologia , Animais , Aves/genética , DNA Viral/genética , Filogenia , Estrigiformes/genética
17.
Physiol Behav ; 216: 112802, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31931038

RESUMO

Inflammatory bowel disease (IBD) is characterized by relapsing periods of gut inflammation, and is comorbid with depression, anxiety, and cognitive deficits. Animal models of IBD that explore the behavioral consequences almost exclusively use acute models of gut inflammation, which fails to recapitulate the cyclic, chronic nature of IBD. This study sought to identify behavioral differences in digging, memory, and stress-coping strategies in mice exposed to one (acute) or three (chronic) cycles of gut inflammation, using the dextran sodium sulfate (DSS) model of colitis. Similar levels of gut pathology were observed between acute and chronically exposed mice, although mice in the chronic treatment had significantly shorter colons, suggesting more severe disease. Behavioral measures revealed an unexpected pattern in which chronic treatment evoked fewer deficits than acute treatment. Specifically, acutely-treated mice showed alterations in measures of object burying, novel object recognition, object location memory, and stress-coping (forced swim task). Chronically-treated animals, however, showed similar alterations in object burying, but not the other measures. These data suggest an adaptive or tolerizing effect of repeated cycles of peripheral gut inflammation on mnemonic function and stress-coping, whereas some other behaviors continue to be affected by gut inflammation. We speculate that the normalization of some functions may involve the reversion to the baseline state of the hypothalamic-pituitary-adrenal axis and/or levels of neuroinflammation, which are both activated by the first exposure to the colitic agent.


Assuntos
Adaptação Psicológica , Colite/psicologia , Adaptação Psicológica/fisiologia , Animais , Colite/patologia , Colite/fisiopatologia , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana/farmacologia , Discriminação Psicológica , Modelos Animais de Doenças , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Recidiva
18.
Proc Natl Acad Sci U S A ; 116(13): 5955-5960, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850515

RESUMO

Copper is a critical enzyme cofactor in the body but also a potent cellular toxin when intracellularly unbound. Thus, there is a delicate balance of intracellular copper, maintained by a series of complex interactions between the metal and specific copper transport and binding proteins. The gastrointestinal (GI) tract is the primary site of copper entry into the body and there has been considerable progress in understanding the intricacies of copper metabolism in this region. The GI tract is also host to diverse bacterial populations, and their role in copper metabolism is not well understood. In this study, we compared the isotopic fractionation of copper in the GI tract of mice with intestinal microbiota significantly depleted by antibiotic treatment to that in mice not receiving such treatment. We demonstrated variability in copper isotopic composition along the length of the gut. A significant difference, ∼1.0‰, in copper isotope abundances was measured in the proximal colon of antibiotic-treated mice. The changes in copper isotopic composition in the colon are accompanied by changes in copper transporters. Both CTR1, a copper importer, and ATP7A, a copper transporter across membranes, were significantly down-regulated in the colon of antibiotic-treated mice. This study demonstrated that isotope abundance measurements of metals can be used as an indicator of changes in metabolic processes in vivo. These measurements revealed a host-microbial interaction in the GI tract involved in the regulation of copper transport.


Assuntos
Antibacterianos/farmacologia , Colo/efeitos dos fármacos , Cobre/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Colo/química , Colo/metabolismo , Cobre/análise , Transportador de Cobre 1 , ATPases Transportadoras de Cobre/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Isótopos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase-1/metabolismo
19.
Mikrochim Acta ; 186(3): 174, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771008

RESUMO

A carbon paste electrode (CPE) was modified with graphite oxide (GrO) and ß-cyclodextrin (CD) to obtain a sensor for simultaneous voltammetric determination of levodopa (LD), piroxicam (PRX), ofloxacin (OFX) and methocarbamol (MCB). The morphology, structure and electrochemical properties of the functionalized GrO were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, contact angle measurements and cyclic voltammetry. Under the optimal experimental conditions, the sensor is capable of detecting LD, PRX, OFX and MCB by square wave voltammetry (SWV) at working potentials of +0.40, +0.60, +1.03 and + 1.27 V (versus Ag/AgCl), respectively. Response is linear from 1.0 to 20 µM for LD, from 1.0 to 15 µM for PRX, from 1.0 to 20 µM for OFX, and from 1.0 to 50 µM for MCB. The respective limits of detection are 65, 105, 89 and 400 nM. The method was successfully applied to the simultaneous determination of LD, PRX, OFX and MCB in (spiked) real river water and synthetic urine samples, and the results were in agreement with those obtained using a spectrophotometric method, with recoveries close to 100%. Graphical abstract Schematic presentation of a novel electroanalytical method employing a carbon paste electrode modified with graphite oxide and ß-cyclodextrin for the simultaneous determination of levodopa, piroxicam, ofloxacin and methocarbamol in urine and river water samples by square wave voltammetry.


Assuntos
Grafite/química , Levodopa/urina , Metocarbamol/urina , Ofloxacino/urina , Piroxicam/urina , beta-Ciclodextrinas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Levodopa/química , Limite de Detecção , Metocarbamol/química , Ofloxacino/química , Óxidos/química , Piroxicam/química , Reprodutibilidade dos Testes , Rios/química
20.
Biomed Pharmacother ; 107: 194-202, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30089249

RESUMO

Beverages containing Trichilia catigua are commonly employed in folk medicine. T. catigua bark extracts possess antioxidant, anti-inflammatory, and bactericidal properties. These properties suggest T. catigua bark extracts as a potential treatment for inflammatory bowel diseases (IBD). Using the 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced model of colitis in rats we evaluated the effect of an ethyl-acetate fraction (EAF) of T. catigua (200 mg/kg) administered by daily oral gavage or intrarectally at different time points after TNBS challenge. TNBS treatment evoked severe colonic inflammation after 24 h that persisted for 7 days, characterized by weight loss, high levels of myeloperoxidase activity, histological and macroscopic damage, and elevated index of oxidative stress in the blood. T. catigua EAF treatment prevented the oxidative stress within 24 h and enhanced tissue recovery observed at day 7, returning histological and macroscopic damage levels to that of the control group. TNBS treatment led to loss of myenteric neurons after 28 days. T. catigua EAF was unable to prevent the neuronal loss. Oral delivery of T. catigua EAF was more effective than intrarectal administration of the extract. In conclusion, T. catigua EAF treatment normalized oxidative stress parameters in blood and reduced the degree of acute inflammation in TNBS colitis.


Assuntos
Acetatos/química , Colite/tratamento farmacológico , Colite/patologia , Meliaceae/química , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Cicatrização , Administração Oral , Animais , Biomarcadores/sangue , Peso Corporal/efeitos dos fármacos , Colite/sangue , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Colo/enzimologia , Colo/patologia , Inflamação/patologia , Masculino , Plexo Mientérico/efeitos dos fármacos , Plexo Mientérico/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Ratos Wistar , Ácido Trinitrobenzenossulfônico , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...