Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 3(7): 7150-7157, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458877

RESUMO

The analytical study of historical collagen-based materials such as leather book covers is a complex task for conservation scientists. Historical leather presents a heterogeneous composition of both organic and inorganic materials that show an evident reactivity, particularly when exposed to specific environments. Its correct preservation in archival documents remains challenging as some aspects of its chemical composition, degradation, and effectiveness of conservation treatments are still not fully understood. Here, we describe a novel application of attenuated total reflection (ATR)-Fourier transform infrared spectroscopic imaging coupled with a macro ATR accessory to study historical leather book covers. This nondestructive and high spatial resolution approach has allowed the visualization of degradation phenomena affecting this fragile material, particularly the gelatinization of collagen and, for the first time, the detection of the formation of calcium stearate (metal carboxylates or soaps). In addition, the distribution of modified soybean oil used as a treatment to maintain properties such as elasticity and hydrophobicity of the leather was studied. The effect of anomalous dispersion on the strong IR bands obtained in the ATR mode and the resulting changes to the band positions are also discussed. This research addresses issues that are relevant to the conservation of archival materials of cultural heritage for future generations.

2.
Anal Chem ; 89(2): 1283-1289, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28035811

RESUMO

Protrusions, efflorescence, delamination, and opacity decreasing are severe degradation phenomena affecting oil paints with zinc oxide, one of the most common white pigments of the 20th century. Responsible for these dramatic alterations are the Zn carboxylates (also known as Zn soaps) originated by the interaction of the pigment and the fatty acids resulting from the hydrolysis of glycerides in the oil binding medium. Despite their widespread occurrence in paintings and the growing interest of the scientific community, the process of formation and evolution of Zn soaps is not yet fully understood. In this study micro-attenuated total reflection (ATR)-FT-IR spectroscopic imaging was required for the investigation at the microscale level of the nature and distribution of Zn soaps in the painting Alchemy by J. Pollock (1947, Peggy Guggenheim Collection, Venice) and for comparison with artificially aged model samples. For both actual samples and models, the role of AlSt(OH)2, a jellifying agent commonly added in 20th century paint tube formulations, proved decisive for the formation of zinc stearate-like (ZnSt2) soaps. It was observed that ZnSt2-like soaps first form around the added AlSt(OH)2 particles and then eventually grow within the whole painting stratigraphy as irregularly shaped particles. In some of the Alchemy samples, and diversely from the models, a peculiar distribution of ZnSt2 aggregates arranged as rounded and larger particles was also documented. Notably, in one of these samples, larger agglomerates of ZnSt2 expanding toward the support of the painting were observed and interpreted as the early stage of the formation of internal protrusions. Micro-ATR-FT-IR spectroscopic imaging, thanks to a very high chemical specificity combined with high spatial resolution, was proved to give valuable information for assessing the conservation state of irreplaceable 20th century oil paintings, revealing the chemical distribution of Zn soaps within the paint stratigraphy before their effect becomes disruptive.

3.
Appl Spectrosc ; 69(10): 1170-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26449810

RESUMO

The control of the angle of incidence in attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy allows for the probing of the sample at different depths of penetration of the evanescent wave. This approach has been recently coupled with macro-imaging capability using a diamond ATR accessory. In this paper, the design of optical apertures for the micro-germanium (Ge) ATR objective is presented for an FT-IR spectroscopic imaging microscope, allowing measurements with different angles of incidence. This approach provides the possibility of three-dimensional (3D) profiling in micro-ATR FT-IR imaging mode. The proof of principle results for measurements of polymer laminate samples at different angles of incidence confirm that controlling the depth of penetration is possible using a Ge ATR objective with added apertures.


Assuntos
Microscopia/instrumentação , Polímeros/análise , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Desenho de Equipamento , Germânio/química , Microscopia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
4.
Analyst ; 140(15): 5344-53, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26086455

RESUMO

Deep ultraviolet (DUV) photoluminescence (PL) microimaging is an emerging approach to characterise materials from historical artefacts (see M. Thoury, J.-P. Echard, M. Réfrégiers, B. H. Berrie, A. Nevin, F. Jamme and L. Bertrand, Anal. Chem., 2011, 83, 1737-1745). Here we further assess the potential of the method to access a deeper understanding of multi-layered varnishes coating wooden violins and lutes. Cross-section micro samples from important 16(th)- to 18(th)-century instruments were investigated using synchrotron PL microimaging and microspectroscopy. Excitation was performed in the DUV and the near ultraviolet (NUV) regions, and emission recorded from the DUV to the visible region, at a submicrometric spatial resolution. Intercomparison of microspectroscopy and microimaging was made possible by radiometrically correcting PL spectra both in excitation and emission. Based on an optimised selection of emission and excitation bands, the specific PL features of the organic binding materials allowed a vastly enhanced discrimination between collagen-based sizing layers and oil/resin-based layers compared to epiluminescence microscopy. PL therefore appears to be a very promising analytical tool to provide new insights into the diversity of surface coating techniques used by instrument-makers. More generally, our results demonstrate the potential of synchrotron PL for studying complex heterogeneous materials beyond the core application of the technique to life sciences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...