Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 236, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413771

RESUMO

Many archaea encode and express histone proteins to compact their genomes. Archaeal and eukaryotic histones share a near-identical fold that permits DNA wrapping through select histone-DNA contacts to generate chromatin-structures that must be traversed by RNA polymerase (RNAP) to generate transcripts. As archaeal histones can spontaneously assemble with a single histone isoform, single-histone chromatin variants provide an idealized platform to detail the impacts of distinct histone-DNA contacts on transcription efficiencies and to detail the role of the conserved cleavage stimulatory factor, Transcription Factor S (TFS), in assisting RNAP through chromatin landscapes. We demonstrate that substitution of histone residues that modify histone-DNA contacts or the three-dimensional chromatin structure result in radically altered transcription elongation rates and pausing patterns. Chromatin-barriers slow and pause RNAP, providing regulatory potential. The modest impacts of TFS on elongation rates through chromatin landscapes is correlated with TFS-dispensability from the archaeon Thermococcus kodakarensis. Our results detail the importance of distinct chromatin structures for archaeal gene expression and provide a unique perspective on the evolution of, and regulatory strategies imposed by, eukaryotic chromatin.


Assuntos
Histonas , Thermococcus , Histonas/metabolismo , DNA Arqueal/genética , Cromatina/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
2.
Nat Microbiol ; 8(9): 1682-1694, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550505

RESUMO

CRISPR-Cas systems provide heritable immunity against viruses and other mobile genetic elements by incorporating fragments of invader DNA into the host CRISPR array as spacers. Integration of new spacers is localized to the 5' end of the array, and in certain Gram-negative Bacteria this polarized localization is accomplished by the integration host factor. For most other Bacteria and Archaea, the mechanism for 5' end localization is unknown. Here we show that archaeal histones play a key role in directing integration of CRISPR spacers. In Pyrococcus furiosus, deletion of either histone A or B impairs integration. In vitro, purified histones are sufficient to direct integration to the 5' end of the CRISPR array. Archaeal histone tetramers and bacterial integration host factor induce similar U-turn bends in bound DNA. These findings indicate a co-evolution of CRISPR arrays with chromosomal DNA binding proteins and a widespread role for binding and bending of DNA to facilitate accurate spacer integration.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Histonas , Histonas/genética , Archaea/genética , Fatores Hospedeiros de Integração , DNA , Bactérias
3.
Front Microbiol ; 12: 681150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054788

RESUMO

Histone proteins compact and organize DNA resulting in a dynamic chromatin architecture impacting DNA accessibility and ultimately gene expression. Eukaryotic chromatin landscapes are structured through histone protein variants, epigenetic marks, the activities of chromatin-remodeling complexes, and post-translational modification of histone proteins. In most Archaea, histone-based chromatin structure is dominated by the helical polymerization of histone proteins wrapping DNA into a repetitive and closely gyred configuration. The formation of the archaeal-histone chromatin-superhelix is a regulatory force of adaptive gene expression and is likely critical for regulation of gene expression in all histone-encoding Archaea. Single amino acid substitutions in archaeal histones that block formation of tightly packed chromatin structures have profound effects on cellular fitness, but the underlying gene expression changes resultant from an altered chromatin landscape have not been resolved. Using the model organism Thermococcus kodakarensis, we genetically alter the chromatin landscape and quantify the resultant changes in gene expression, including unanticipated and significant impacts on provirus transcription. Global transcriptome changes resultant from varying chromatin landscapes reveal the regulatory importance of higher-order histone-based chromatin architectures in regulating archaeal gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...