Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5151, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620344

RESUMO

Peptidoglycan (PG) is an essential structural component of the bacterial cell wall that is synthetized during cell division and elongation. PG forms an extracellular polymer crucial for cellular viability, the synthesis of which is the target of many antibiotics. PG assembly requires a glycosyltransferase (GT) to generate a glycan polymer using a Lipid II substrate, which is then crosslinked to the existing PG via a transpeptidase (TP) reaction. A Shape, Elongation, Division and Sporulation (SEDS) GT enzyme and a Class B Penicillin Binding Protein (PBP) form the core of the multi-protein complex required for PG assembly. Here we used single particle cryo-electron microscopy to determine the structure of a cell elongation-specific E. coli RodA-PBP2 complex. We combine this information with biochemical, genetic, spectroscopic, and computational analyses to identify the Lipid II binding sites and propose a mechanism for Lipid II polymerization. Our data suggest a hypothesis for the movement of the glycan strand from the Lipid II polymerization site of RodA towards the TP site of PBP2, functionally linking these two central enzymatic activities required for cell wall peptidoglycan biosynthesis.


Assuntos
Escherichia coli , Peptidil Transferases , Microscopia Crioeletrônica , Escherichia coli/genética , Peptidoglicano , Biologia Molecular , Antibacterianos , Glicosiltransferases
2.
Biophys J ; 121(11): 2078-2083, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35505611

RESUMO

Lipoprotein signal peptidase (LspA) is an aspartyl protease that cleaves the transmembrane helix signal peptide of lipoproteins as part of the lipoprotein-processing pathway. Members of this pathway are excellent targets for the development of antibiotic therapeutics because they are essential in Gram-negative bacteria, are important for virulence in Gram-positive bacteria, and may not develop antibiotic resistance. Here, we report the conformational dynamics of LspA in the apo state and bound to the antibiotic globomycin determined using molecular dynamics simulations and electron paramagnetic resonance. The periplasmic helix fluctuates on the nanosecond timescale and samples unique conformations in the different states. In the apo state, the dominant conformation is the most closed and occludes the charged active site from the lipid bilayer. With antibiotic bound there are multiple binding modes with the dominant conformation of the periplasmic helix in a more open conformation. The different conformations observed in both bound and apo states indicate a flexible and adaptable active site, which explains how LspA accommodates and processes such a variety of substrates.


Assuntos
Antibacterianos , Proteínas de Bactérias , Antibacterianos/química , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Lipoproteínas , Simulação de Dinâmica Molecular , Conformação Proteica
3.
Nature ; 604(7905): 371-376, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388216

RESUMO

The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.


Assuntos
Ligases , Lipopolissacarídeos , Antígenos O , Proteínas de Bactérias/química , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Microscopia Crioeletrônica , Glicosiltransferases , Bactérias Gram-Negativas , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo
4.
J Chem Theory Comput ; 17(10): 6472-6482, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34492188

RESUMO

Coarse-grained molecular dynamics provides a means for simulating the assembly and interactions of macromolecular complexes at a reduced level of representation, thereby allowing both longer timescale and larger sized simulations. Here, we describe an enhanced fragment-based protocol for converting macromolecular complexes from coarse-grained to atomistic resolution, for further refinement and analysis. While the focus is upon systems that comprise an integral membrane protein embedded in a phospholipid bilayer, the technique is also suitable for membrane-anchored and soluble protein/nucleotide complexes. Overall, this provides a method for generating an accurate and well-equilibrated atomic-level description of a macromolecular complex. The approach is evaluated using a diverse test set of 11 system configurations of varying size and complexity. Simulations are assessed in terms of protein stereochemistry, conformational drift, lipid/protein interactions, and lipid dynamics.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Proteínas de Membrana/química , Conformação Molecular
5.
Structure ; 28(4): 475-487.e3, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32053772

RESUMO

Escherichia coli lipoprotein precursors at the inner membrane undergo three maturation stages before transport by the Lol system to the outer membrane. Here, we develop a pipeline to simulate the membrane association of bacterial lipoproteins in their four maturation states. This has enabled us to model and simulate 81 of the predicted 114 E. coli lipoproteins and reveal their interactions with the host lipid membrane. As part of this set we characterize the membrane contacts of LolB, the lipoprotein involved in periplasmic translocation. We also consider the means and bioenergetics for lipoprotein localization. Our calculations uncover a preference for LolB over LolA and therefore indicate how a lipoprotein may be favorably transferred from the inner to outer membrane. Finally, we reveal that LolC has a role in membrane destabilization, thereby promoting lipoprotein transfer to LolA.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Membrana Externa Bacteriana/metabolismo , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Simulação de Dinâmica Molecular , Proteínas Periplásmicas de Ligação/química , Membrana Externa Bacteriana/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Ligação Proteica , Transporte Proteico
6.
J Chem Theory Comput ; 15(10): 5727-5736, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31476127

RESUMO

Integral membrane proteins are regulated by specific interactions with lipids from the surrounding bilayer. The structures of protein-lipid complexes can be determined through a combination of experimental and computational approaches, but the energetic basis of these interactions is difficult to resolve. Molecular dynamics simulations provide the primary computational technique to estimate the free energies of these interactions. We demonstrate that the energetics of protein-lipid interactions may be reliably and reproducibly calculated using three simulation-based approaches: potential of mean force calculations, alchemical free energy perturbation, and well-tempered metadynamics. We employ these techniques within the framework of a coarse-grained force field and apply them to both bacterial and mammalian membrane protein-lipid systems. We demonstrate good agreement between the different techniques, providing a robust framework for their automated implementation within a pipeline for annotation of newly determined membrane protein structures.


Assuntos
Lipídeos/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Termodinâmica , Humanos
7.
Nat Chem ; 10(8): 813-820, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30030538

RESUMO

The seeming contradiction that K+ channels conduct K+ ions at maximal throughput rates while not permeating slightly smaller Na+ ions has perplexed scientists for decades. Although numerous models have addressed selective permeation in K+ channels, the combination of conduction efficiency and ion selectivity has not yet been linked through a unified functional model. Here, we investigate the mechanism of ion selectivity through atomistic simulations totalling more than 400 µs in length, which include over 7,000 permeation events. Together with free-energy calculations, our simulations show that both rapid permeation of K+ and ion selectivity are ultimately based on a single principle: the direct knock-on of completely desolvated ions in the channels' selectivity filter. Herein, the strong interactions between multiple 'naked' ions in the four filter binding sites give rise to a natural exclusion of any competing ions. Our results are in excellent agreement with experimental selectivity data, measured ion interaction energies and recent two-dimensional infrared spectra of filter ion configurations.


Assuntos
Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , Canais de Potássio/metabolismo , Potássio/química , Potássio/metabolismo , Transporte de Íons , Canais de Potássio/química , Sódio/química , Sódio/metabolismo , Espectrofotometria Infravermelho , Especificidade por Substrato
8.
Structure ; 26(1): 171-180.e2, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29249607

RESUMO

Playing a central role in cell signaling, G-protein-coupled receptors (GPCRs) are the largest superfamily of membrane proteins and form the majority of drug targets in humans. How extracellular agonist binding triggers the activation of GPCRs and associated intracellular effector proteins remains, however, poorly understood. Structural studies have revealed that inactive class A GPCRs harbor a conserved binding site for Na+ ions in the center of their transmembrane domain, accessible from the extracellular space. Here, we show that the opening of a conserved hydrated channel in the activated state receptors allows the Na+ ion to egress from its binding site into the cytosol. Coupled with protonation changes, this ion movement occurs without significant energy barriers, and can be driven by physiological transmembrane ion and voltage gradients. We propose that Na+ ion exchange with the cytosol is a key step in GPCR activation. Further, we hypothesize that this transition locks receptors in long-lived active-state conformations.


Assuntos
Carbacol/química , Fosfatidilcolinas/química , Receptor Muscarínico M2/química , Sódio/química , Motivos de Aminoácidos , Sítios de Ligação , Carbacol/metabolismo , Cátions Monovalentes , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Transporte de Íons , Cinética , Ligantes , Simulação de Dinâmica Molecular , Fosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Receptor Muscarínico M2/metabolismo , Sódio/metabolismo , Eletricidade Estática , Termodinâmica
9.
Sci Rep ; 7(1): 17091, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213101

RESUMO

Widespread antibiotic resistance, especially of Gram-negative bacteria, has become a severe concern for human health. Tripartite efflux pumps are one of the major contributors to resistance in Gram-negative pathogens, by efficiently expelling a broad spectrum of antibiotics from the organism. In Neisseria gonorrhoeae, one of the first bacteria for which pan-resistance has been reported, the most expressed efflux complex is MtrCDE. Here we present the electrophysiological characterisation of the outer membrane component MtrE and the membrane fusion protein MtrC, obtained by a combination of planar lipid bilayer recordings and in silico techniques. Our in vitro results show that MtrE can be regulated by periplasmic binding events and that the interaction between MtrE and MtrC is sufficient to stabilize this complex in an open state. In contrast to other efflux conduits, the open complex only displays a slight preference for cations. The maximum conductance we obtain in the in vitro recordings is comparable to that seen in our computational electrophysiology simulations conducted on the MtrE crystal structure, indicating that this state may reflect a physiologically relevant open conformation of MtrE. Our results suggest that the MtrC/E binding interface is an important modulator of MtrE function, which could potentially be targeted by new efflux inhibitors.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Neisseria gonorrhoeae/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Fenômenos Eletrofisiológicos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
10.
Curr Opin Pharmacol ; 30: 44-50, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27474871

RESUMO

G-protein coupled receptors (GPCRs) form the largest class of membrane proteins in humans and the targets of most present drugs. Membrane potential is one of the defining characteristics of living cells. Recent work has shown that the membrane voltage, and changes thereof, modulates signal transduction and ligand binding in GPCRs. As it may allow differential signalling patterns depending on tissue, cell type, and the excitation status of excitable cells, GPCR voltage sensitivity could have important implications for their pharmacology. This review summarises recent experimental insights on GPCR voltage regulation and the role of molecular dynamics simulations in identifying the structural basis of GPCR voltage-sensing. We discuss the potential significance for drug design on GPCR targets from excitable and non-excitable cells.


Assuntos
Potenciais da Membrana , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Transdução de Sinais/fisiologia
11.
Structure ; 24(6): 997-1007, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27210286

RESUMO

G-protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins and one-third of all drug targets in humans. A number of recent studies have reported evidence for substantial voltage regulation of GPCRs. However, the structural basis of GPCR voltage sensing has remained enigmatic. Here, we present atomistic simulations on the δ-opioid and M2 muscarinic receptors, which suggest a structural and mechanistic explanation for the observed voltage-induced functional effects. The simulations reveal that the position of an internal Na(+) ion, recently detected to bind to a highly conserved aqueous pocket in receptor crystal structures, strongly responds to voltage changes. The movements give rise to gating charges in excellent agreement with previous experimental recordings. Furthermore, free energy calculations show that these rearrangements of Na(+) can be induced by physiological membrane voltages. Due to its role in receptor function and signal bias, the repositioning of Na(+) has important general implications for signal transduction in GPCRs.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Sódio/metabolismo , Animais , Cristalografia por Raios X , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Receptores Opioides delta/química , Receptores Opioides delta/metabolismo
12.
Front Immunol ; 4: 221, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935598

RESUMO

Recent early stage clinical trials evaluating the adoptive transfer of patient CD8(+) T-cells re-directed with antigen receptors recognizing tumors have shown very encouraging results. These reports provide strong support for further development of the therapeutic concept as a curative cancer treatment. In this respect combining the adoptive transfer of tumor-specific T-cells with therapies that increase their anti-tumor capacity is viewed as a promising strategy to improve treatment outcome. The ex vivo genetic engineering step that underlies T-cell re-direction offers a unique angle to combine antigen receptor delivery with the targeting of cell-intrinsic pathways that restrict T-cell effector functions. Recent progress in genome editing technologies such as protein- and RNA-guided endonucleases raise the possibility of disrupting gene expression in T-cells in order to enhance effector functions or to bypass tumor immune suppression. This approach would avoid the systemic administration of compounds that disrupt immune homeostasis, potentially avoiding autoimmune adverse effects, and could improve the efficacy of T-cell based adoptive therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...