Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Calcif Tissue Int ; 115(1): 63-77, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733411

RESUMO

Osteopontin (OPN) and Bone Sialoprotein (BSP), abundantly expressed by osteoblasts and osteoclasts, appear to have important, partly overlapping functions in bone. In gene-knockout (KO, -/-) models of either protein and their double (D)KO in the same CD1/129sv genetic background, we analyzed the morphology, matrix characteristics, and biomechanical properties of femur bone in 2 and 4 month old, male and female mice. OPN-/- mice display inconsistent, perhaps localized hypermineralization, while the BSP-/- are hypomineralized throughout ages and sexes, and the low mineralization of young DKO mice recovers with age. The higher contribution of primary bone remnants in OPN-/- shafts suggests a slow turnover, while their lower percentage in BSP-/- indicates rapid remodeling, despite FTIR-based evidence in this genotype of a high maturity of the mineralized matrix. In 3-point bending assays, OPN-/- bones consistently display higher Maximal Load, Work to Max. Load and in young mice Ultimate Stress, an intrinsic characteristic of the matrix. Young male and old female BSP-/- also display high Work to Max. Load along with low Ultimate Stress. Principal Component Analysis confirms the major role of morphological traits in mechanical competence, and evidences a grouping of the WT phenotype with the OPN-/- and of BSP-/- with DKO, driven by both structural and matrix parameters, suggesting that the presence or absence of BSP has the most profound effects on skeletal properties. Single or double gene KO of OPN and BSP thus have multiple distinct effects on skeletal phenotypes, confirming their importance in bone biology and their interplay in its regulation.


Assuntos
Sialoproteína de Ligação à Integrina , Camundongos Knockout , Osteopontina , Animais , Osteopontina/genética , Osteopontina/metabolismo , Feminino , Masculino , Camundongos , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Fenômenos Biomecânicos , Osso e Ossos/metabolismo , Densidade Óssea/fisiologia , Densidade Óssea/genética , Fêmur/metabolismo , Calcificação Fisiológica/fisiologia , Calcificação Fisiológica/genética
2.
Exp Gerontol ; 184: 112337, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006949

RESUMO

Aging is associated with detrimental bone loss leading to fragility fractures in both men and women. Notably, a majority of bone loss with aging is cortical, as well as a large number of fractures are non-vertebral and at the non-hip sites. Nacre is a product of mollusks composed of calcium carbonate embedded in organic components. As our previous study demonstrated the protective effect of nacre supplementation on trabecular bone loss in ovariectomized rats, we sought to evaluate the effect of dietary nacre on bone loss related to aging in female mice which do not suffer true menopause as observed in women. The current study compared the effect of a 90-day long nacre-supplemented diet to that of Standard or CaCO3 diets on both bone mass and strength in 16-month-old C57BL/6 female mice. Multiple approaches were performed to assess the microarchitecture and mechanical properties of long bones, analyze trabecular histomorphometry, and measure bone cell-related gene expressions, and bone turnover markers. In the cortex, dietary nacre improved cortical bone strength in line with lower expression levels of genes reflecting osteoclasts activity compared to Standard or CaCO3 diets (p < 0.05). In the trabeculae, nacre-fed mice were characterized by a bone remodeling process more active than the other groups as shown by greater histomorphometric parameters and osteoblast-related gene expressions (p < 0.05). But these differences were not exhibited at the level of the trabecular microarchitecture at this age. Collectively, these data suggest that dietary nacre should be a potential candidate for reducing aging-associated cortical bone loss in the elderly.


Assuntos
Doenças Ósseas Metabólicas , Nácar , Humanos , Masculino , Idoso , Feminino , Camundongos , Ratos , Animais , Camundongos Endogâmicos C57BL , Osso e Ossos , Densidade Óssea , Osso Cortical , Suplementos Nutricionais
3.
Nat Commun ; 14(1): 6311, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813884

RESUMO

Astronauts in microgravity experience multi-system deconditioning, impacting their inflight efficiency and inducing dysfunctions upon return to Earth gravity. To fill the sex gap of knowledge in the health impact of spaceflights, we simulate microgravity with a 5-day dry immersion in 18 healthy women (ClinicalTrials.gov Identifier: NCT05043974). Here we show that dry immersion rapidly induces a sedentarily-like metabolism shift mimicking the beginning of a metabolic syndrome with a drop in glucose tolerance, an increase in the atherogenic index of plasma, and an impaired lipid profile. Bone remodeling markers suggest a decreased bone formation coupled with an increased bone resorption. Fluid shifts and muscular unloading participate to a marked cardiovascular and sensorimotor deconditioning with decreased orthostatic tolerance, aerobic capacity, and postural balance. Collected datasets provide a comprehensive multi-systemic assessment of dry immersion effects in women and pave the way for future sex-based evaluations of countermeasures.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Feminino , Descondicionamento Cardiovascular/fisiologia , Imersão , Ausência de Peso/efeitos adversos , Simulação de Ausência de Peso
4.
Sci Rep ; 13(1): 18072, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872309

RESUMO

Long bone fractures are a concern in long-duration exploration missions (LDEM) where crew autonomy will exceed the current Low Earth Orbit paradigm. Current crew selection assumptions require extensive complete training and competency testing prior to flight for off-nominal situations. Analogue astronauts (n = 6) can be quickly trained to address a single fracture pattern and then competently perform the repair procedure. An easy-to-use external fixation (EZExFix) was employed to repair artificial tibial shaft fractures during an inhabited mission at the Mars Desert Research Station (Utah, USA). Bone repair safety zones were respected (23/24), participants achieved 79.2% repair success, and median completion time was 50.04 min. Just-in-time training in-mission was sufficient to become autonomous without pre-mission medical/surgical/mechanical education, regardless of learning conditions (p > 0.05). Similar techniques could be used in LDEM to increase astronauts' autonomy in traumatic injury treatment and lower skill competency requirements used in crew selection.


Assuntos
Fraturas Ósseas , Marte , Voo Espacial , Humanos , Voo Espacial/métodos , Astronautas , Utah
5.
JBMR Plus ; 7(7): e10756, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37457881

RESUMO

Human skeletal hemodynamics remain understudied. Neither assessments in weight-bearing bones during walking nor following periods of immobility exist, despite knowledge of altered nutrient-artery characteristics after short-duration unloading in rodents. We studied 12 older adults (8 females, aged 59 ± 3 years) who participated in ambulatory near-infrared spectroscopy (NIRS) assessments of tibial hemodynamics before (PRE) and after (POST) 14 days of head-down bed rest (HDBR), with most performing daily resistance and aerobic exercise countermeasures during HDBR. Continual simultaneous NIRS recordings were acquired over the proximal anteromedial tibial prominence of the right lower leg and ipsilateral lateral head of the gastrocnemius muscle during supine rest, walking, and standing. During 10 minutes of walking, desaturation kinetics in the tibia were slower (time to 95% nadir values 125.4 ± 56.8 s versus 55.0 ± 30.1 s, p = 0.0014). Tibial tissue saturation index (TSI) immediately fell (-9.9 ± 4.55) and did not completely recover by the end of 10 minutes of walking (-7.4 ± 6.7%, p = 0.027). Upon standing, total hemoglobin (tHb) kinetics were faster in the tibia (p < 0.0001), whereas HDBR resulted in faster oxygenated hemoglogin (O2Hb) kinetics in both tissues (p = 0.039). After the walk-to-stand transition, changes in O2Hb (p = 0.0022) and tHb (p = 0.0047) were attenuated in the tibia alone after bed rest. Comparisons of NIRS-derived variables during ambulation and changes in posture revealed potentially deleterious adaptations of feed vessels after HDBR. We identify important and novel tibial hemodynamics in humans during ambulation before and after bed rest, necessitating further investigation. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
Sci Rep ; 13(1): 5520, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015932

RESUMO

Chronic kidney disease (CKD) is associated with osteosarcopenia, and because a physical decline in patients correlates with an increased risk of morbidity, an improvement of the musculoskeletal system is expected to improve morbi-mortality. We recently uncovered that the intestinal hormone Fibroblast Growth Factor 19 (FGF19) is able to promote skeletal muscle mass and strength in rodent models, in addition to its capacity to improve glucose homeostasis. Here, we tested the effects of a treatment with recombinant human FGF19 in a CKD mouse model, which associates sarcopenia and metabolic disorders. In 5/6 nephrectomized (5/6Nx) mice, subcutaneous FGF19 injection (0.1 mg/kg) during 18 days increased skeletal muscle fiber size independently of food intake and weight gain, associated with decreased gene expression of myostatin. Furthermore, FGF19 treatment attenuated glucose intolerance and reduced hepatic expression of gluconeogenic genes in uremic mice. Importantly, the treatment also decreased gene expression of liver inflammatory markers in CKD mice. Therefore, our results suggest that FGF19 may represent a novel interesting therapeutic strategy for a global improvement of sarcopenia and metabolic complications in CKD.


Assuntos
Fatores de Crescimento de Fibroblastos , Insuficiência Renal Crônica , Sarcopenia , Animais , Humanos , Camundongos , Fatores de Crescimento de Fibroblastos/farmacologia , Inflamação/patologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Insuficiência Renal Crônica/complicações , Sarcopenia/patologia
7.
Eur Arch Otorhinolaryngol ; 280(7): 3131-3140, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36604323

RESUMO

PURPOSE: Analysis of cochlear structures and postoperative temporal bone (TB) imaging are gaining importance in the evaluation of cochlear implantation (CI°). Our aims were to explore the microarchitecture of human cochlea using micro-computed tomography (µCT), analyze electrode's placement inside cochlea after CI°, and compare pre-/post-implantation µCT scans with cone-beam CT (CBCT) scans of same TBs. METHODS: Cadaveric TBs were scanned using µCT and CBCT then underwent CI° using straight electrodes. Thereafter, they underwent again µCT and CBCT-imaging. RESULTS: Ten TBs were studied. µCT allowed visualization of scala tympani, scala vestibuli, basilar membrane, osseous spiral lamina, crista fenestrae, and spiral ligament. CBCT showed same structures except spiral ligament and crista fenestrae. After CI°, µCT and CBCT displayed the scalar location and course of electrode array within the cochlea. There were 7 cases of atraumatic electrode insertion and 3 cases of insertion trauma: basilar membrane elevation, electrode foldover with limited migration into scala vestibuli, and electrode kinking with limited migration into scala vestibuli. Insertion trauma was not correlated with cochlea's size or crista's maximal height but with round window membrane diameter. Resolution of µCT was higher than CBCT but electrode artifacts were similar. CONCLUSIONS: µCT was accurate in visualizing cochlear structures, and course and scalar position of electrode array inside cochlea with any possible trauma to cochlea or array. CBCT offers a good alternative to µCT in clinical practice for cochlear imaging and evaluation of CI°, with lower radiation and higher resolution than multi-slice CT. Difficulties related to non-traumatic CI° are multifactorial.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Implante Coclear/métodos , Microtomografia por Raio-X , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Tomografia Computadorizada de Feixe Cônico , Osso Temporal/diagnóstico por imagem , Osso Temporal/cirurgia
8.
NPJ Microgravity ; 9(1): 9, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707515

RESUMO

Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper "Human Physiology - Musculoskeletal system", this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight. In addition, understanding the kinetics of the different components of the musculoskeletal system in parallel with a detailed description of the molecular mechanisms driving these alterations appears to be the best approach to address potential musculoskeletal problems that future exploratory-mission crew will face. These research efforts should be accompanied by technical advances in molecular and phenotypic monitoring tools to provide in-flight real-time feedback.

9.
Bone ; 169: 116640, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36526262

RESUMO

Impaired mechanical stimuli during hindlimb unloading (HLU) are believed to exacerbate osteocyte paracrine regulation of osteoclasts. We hypothesized that bone loss and deterioration of the osteocyte lacuno-canalicular network are attenuated in HLU mice housed at thermoneutrality (28 °C) compared with those housed at ambient temperature (22 °C). Following acclimatization, 20-week-old male C57BL/6J mice were submitted to HLU or kept in pair-fed control cages (CONT), for 5 days (5d) or 14d, at 22 °C or 28 °C. In the femur distal metaphysis, thermoneutral CONT mice had higher bone volume (p = 0.0007, BV/TV, in vivo µCT, vs. 14dCONT22) whilst osteoclastic surfaces of CONT and HLU were greater at 22 °C (5dCONT22 + 53 %, 5dHLU22 + 50 %, 14dCONT22 + 186 %, 14dHLU22 + 104 %, vs matching 28 °C group). In the femur diaphysis and at both temperatures, 14dHLU exhibited thinner cortices distally or proximally compared to controls; the mid-diaphysis being thicker at 28 °C than at 22 °C in all groups. Expression of cortical genes for proteolytic enzyme (Mmp13), markers for osteoclastogenic differentiation (MCSF, RANKL), and activity (TRAP, Ctsk) were increased following 22 °C HLU, whereas only Ctsk expression was increased following 28 °C HLU. Expression of cortical genes for apoptosis, senescence, and autophagy were not elevated following HLU at any temperature. Osteocyte density at the posterior mid-diaphysis was similar between groups, as was the proportion of empty lacunae (<0.5 %). However, analysis of the lacuno-canalicular network (LCN, fluorescein staining) revealed unstained areas in the 14dHLU22 group only, suggesting disrupted LCN flow in this group alone. In conclusion, 28 °C housing influences the HLU bone response but does not prevent bone loss. Furthermore, our results do not show osteocyte senescence or death, and at thermoneutrality, HLU-induced bone resorption is not triggered by osteoclastic activators RANKL and MCSF.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Camundongos , Masculino , Animais , Elevação dos Membros Posteriores , Osteócitos/metabolismo , Camundongos Endogâmicos C57BL , Osso e Ossos/metabolismo , Reabsorção Óssea/metabolismo , Doenças Ósseas Metabólicas/metabolismo
10.
BMJ Open Sci ; 6(1): e100231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387954

RESUMO

Objectives: The purpose of this preclinical study was to evaluate the safety, the local tissue effects and bone healing performance (osteoconduction, osseointegration) of nacre powder in a sheep intraosseous implantation model. This represents the first preclinical study to assess nacre safety and efficacy in supporting new bone formation in accordance with the ISO 10993 standard for biomedical devices. Methods: The local tissue effects and the material performance were evaluated 8 weeks after implantation by qualitative macroscopic observation and qualitative as well as semiquantitative microscopic analyses of the bone sites. Histopathological characterisations were run to assess local tissue effects. In addition, microarchitectural, histomorphometric and histological characterisations were used to evaluate the effects of the implanted material. Results: Nacre powder was shown to cause a moderate inflammatory response in the site where it was implanted compared with the sites left empty. The biomaterial implanted within the generated defects was almost entirely degraded over the investigated time span and resulted in the formation of new bone with a seamless connection with the surrounding tissue. On the contrary, in the empty defects, the formation of a thick compact band of sclerotic bone was observed by both microarchitectural and histological characterisation. Conclusions: Nacre powder was confirmed to be a safe biomaterial for bone regeneration applications in vivo, while supporting bone formation.

11.
Front Physiol ; 13: 952140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160873

RESUMO

Purpose: To evaluate whole-body vibration (WBV) osteogenic potential in physically inactive postmenopausal women using high-frequency and combined amplitude stimuli. Methods: Two-hundred fifty-five physically inactive postmenopausal women (55-75 years) with 10-year major osteoporotic fracture risk (3%-35%) participated in this 18-month study. For the first 12 months, the vibration group experienced progressive 20-min WBV sessions (up to 3 sessions/week) with rest periods (30-60 s) between exercises. Frequencies (30-50 Hz), with low (0.2-0.4 mm) and high (0.6-0.8 mm) amplitude stimuli were delivered via PowerPlate Pro5 platforms producing accelerations of (0.75-7.04 g). The last 6 months for the treatment group were a follow-up period similar to control. Serum bone remodelling markers [C-terminal crosslinked telopeptide of type-1 collagen (CTX), procollagen type-1 N-terminal propeptide (P1NP), bone alkaline phosphatase (BAP) and sclerostin] were measured at fasting. CTX and P1NP were determined by automated chemiluminescence immunoassay, bone alkaline phosphatase (BAP) by automated spectrophotometric immunoassay, and sclerostin by an enzyme-immunoassay. Bone mineral density (BMD) of the whole-body, proximal femur and lumbar vertebrae was measured by dual-energy X-ray absorptiometry (DXA). Bone microarchitecture of the distal non-dominant radius and tibia was measured by high-resolution peripheral quantitative computed tomography (HR-pQCT). Results: Femoral neck (p = 0.520) and spine BMD (p = 0.444) failed to improve after 12 months of WBV. Bone macro and microstructural parameters were not impacted by WBV, as well as estimated failure load at the distal radius (p = 0.354) and tibia (p = 0.813). As expected, most DXA and HR-pQCT parameters displayed age-related degradation in this postmenopausal population. BAP and CTX increased over time in both groups, with CTX more marginally elevated in the vibration group when comparing baseline changes to month-12 (480.80 pmol/L; p = 0.039) and month-18 (492.78 pmol/L; p = 0.075). However, no differences were found when comparing group concentrations only at month-12 (506.35 pmol/L; p = 0.415) and month-18 (518.33 pmol/L; p = 0.480), indicating differences below the threshold of clinical significance. Overall, HR-pQCT, DXA bone parameters and bone turnover markers remained unaffected. Conclusion: Combined amplitude and high-frequency training for one year had no ameliorating effect on DXA and HR-pQCT bone parameters in physically inactive postmenopausal women. Serum analysis did not display any significant improvement in formation and resorption markers and also failed to alter sclerostin concentrations between groups.

12.
JBMR Plus ; 6(9): e10655, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36111203

RESUMO

Nacre has emerged as a beneficial natural product for bone cells and tissues, but its effect was only studied by gavage in the ovariectomized mouse model. We sought to assess the antiosteoporotic effect of nacre through a nutritional supplementation in the ovariectomized rat model. Sixteen-week-old female Wistar rats were either Sham-operated or bilateral ovariectomized (OVX) and then fed with standard diet (Sham and OVX groups) or standard diet supplemented with either 0.25% CaCO3 or nacre (OVX CaCO3 and OVX Nacre group, respectively) for 28 days (n = 10/group). The bone microarchitecture was assessed at appendicular and axial bones by micro-computed tomography (µCT). Histomorphometric analysis was performed to determine cellular and dynamic bone parameters. Bone metabolism was also evaluated by biochemical markers and gene expression levels. Nacre-based diet prevented the OVX-induced bone loss better than that of the CaCO3 supplement, given the significant changes in trabecular bone volume fraction (BV/TV) both at the femoral distal metaphysis (difference, 35%; p = 0.004) and at the second lumbar spine (difference, 11%; p = 0.01). Trabecular osteoclast surfaces (Oc.S/BS) were also 1.5-fold lower at the tibial proximal metaphysis in OVX Nacre group compared with OVX CaCO3 group (p = 0.02). By principal component analysis (PCA), OVX Nacre group formed a cluster away from OVX group and with a trend closest to Sham group. These data were consistent with biological measurements demonstrating a positive profile related to nacre supplementation, which blunted an increase in serum CTX level and enhanced serum P1NP secretion 14 days post-OVX compared with CaCO3 supplementation. Bmp2 mRNA expression in OVX Nacre group was +1.76-fold (p = 0.004) and +1.30-fold (p = 0.20) compared with OVX and OVX CaCO3 groups, respectively. We conclude that supplementation with nacre could effectively limit bone loss induced by estrogen deficiency just after OVX in rats by modulating the negative imbalance of bone turnover. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

13.
Front Physiol ; 13: 801448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574450

RESUMO

Background: The dry immersion (DI) model closely reproduces factors of spaceflight environment such as supportlessness, mechanical and axial unloading, physical inactivity, and induces early increased bone resorption activity and metabolic responses as well as fluid centralization. The main goal of this experiment was to assess the efficacity of venoconstrictive thigh cuffs, as countermeasure to limit cephalad fluidshift, on DI-induced deconditioning, in particular for body fluids and related ophthalmological disorders. Our specific goal was to deepen our knowledge on the DI effects on the musculoskeletal events and to test whether intermittent counteracting fluid transfer would affect DI-induced bone modifications. Methods: Eighteen males divided into Control (DI) or Cuffs (DI-TC) group underwent an unloading condition for 5 days. DI-TC group wore thigh cuffs 8-10 h/day during DI period. Key markers of bone turnover, phospho-calcic metabolism and associated metabolic factors were measured. Results: In the DI group, bone resorption increased as shown by higher level in Tartrate-resistant acid phosphatase isoform 5b at DI24h. C-terminal telopeptide levels were unchanged. Bone formation and mineralization were also affected at DI24h with a decreased in collagen type I synthesis and an increased bone-specific alkaline phosphatase. In addition, osteocalcin and periostin levels decreased at DI120h. Calcemia increased up to a peak at DI48h, inducing a trend to decrease in parathyroid hormone levels at DI120h. Phosphatemia remained unchanged. Insulin-like growth factor 1 and visfatin were very sensitive to DI conditions as evidenced by higher levels by 120% vs. baseline for visfatin at DI48h. Lipocalin-2, a potential regulator of bone homeostasis, and irisin were unchanged. The changes in bone turnover markers were similar in the two groups. Only periostin and visfatin changes were, at least partially, prevented by thigh cuffs. Conclusion: This study confirmed the rapid dissociation between bone formation and resorption under DI conditions. It revealed an adaptation peak at DI48h, then the maintenance of this new metabolic state during all DI. Notably, collagen synthesis and mineralisation markers evolved asynchronously. Thigh cuffs did not prevent significantly the DI-induced deleterious effects on bone cellular activities and/or energy metabolism.

14.
Front Immunol ; 13: 856247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401557

RESUMO

YAP/TAZ are transcription co-factors recently described responsive to pro-inflammatory cytokines and involved in inflammatory-related disorders. However, the role of tumor necrosis factor (TNF), a major pro-inflammatory cytokine, on YAP signaling is not well understood and controversial. Here, we observe in vitro, using wild type and YAP knockout HEK293 cells, that TNF triggers YAP nuclear translocation and transcriptional activity, thus being dependent on Rho family of GTPases. In response to TNF, YAP transcriptional activity orientates cell fate toward survival. Transcriptional analysis with Nanostring technology reveals that YAP modulates TNF-induced increase in fibro-inflammatory pathways such as NF-κB, inflammasomes, cytokines or chemokines signaling and pro-fibrotic pathways involving TGF-ß and extracellular matrix remodeling. Therefore, in response to TNF, YAP acts as a sustainer of the inflammatory response and as a molecular link between inflammation and fibrotic processes. This work identifies that YAP is critical to drive several biological effects of TNF which are involved in cancer and inflammatory disorders.


Assuntos
Fator de Necrose Tumoral alfa , Proteínas de Sinalização YAP , Fibrose , Células HEK293 , Humanos , NF-kappa B/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas de Sinalização YAP/metabolismo
15.
Biomedicines ; 10(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35203551

RESUMO

The dissociation of bone formation and resorption is an important physiological process during spaceflight. It also occurs during local skeletal unloading or immobilization, such as in people with neuromuscular disorders or those who are on bed rest. Under these conditions, the physiological systems of the human body are perturbed down to the cellular level. Through the absence of mechanical stimuli, the musculoskeletal system and, predominantly, the postural skeletal muscles are largely affected. Despite in-flight exercise countermeasures, muscle wasting and bone loss occur, which are associated with spaceflight duration. Nevertheless, countermeasures can be effective, especially by preventing muscle wasting to rescue both postural and dynamic as well as muscle performance. Thus far, it is largely unknown how changes in bone microarchitecture evolve over the long term in the absence of a gravity vector and whether bone loss incurred in space or following the return to the Earth fully recovers or partly persists. In this review, we highlight the different mechanisms and factors that regulate the humoral crosstalk between the muscle and the bone. Further we focus on the interplay between currently known myokines and osteokines and their mutual regulation.

16.
Front Immunol ; 12: 791907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956224

RESUMO

Objective: The role of YAP/TAZ, two transcriptional co-activators involved in several cancers, was investigated in rheumatoid arthritis (RA). Methods: Fibroblast like synoviocytes (FLS) from patients with RA or osteoarthritis were cultured in 2D or into 3D synovial organoids. Arthritis rat model (n=28) and colitis mouse model (n=21) were used. YAP/TAZ transcriptional activity was inhibited by verteporfin (VP). Multiple techniques were used to assess gene and/or protein expression and/or localization, cell phenotype (invasion, proliferation, apoptosis), bone erosion, and synovial stiffness. Results: YAP/TAZ were transcriptionally active in arthritis (19-fold increase for CTGF expression, a YAP target gene, in RA vs. OA organoids; p<0.05). Stiff support of culture or pro-inflammatory cytokines further enhanced YAP/TAZ transcriptional activity in RA FLS. Inhibiting YAP/TAZ transcriptional activity with VP restored a common phenotype in RA FLS with a decrease in apoptosis resistance, proliferation, invasion, and inflammatory response. Consequently, VP blunted hyperplasic lining layer formation in RA synovial organoids. In vivo, VP treatment strongly reduced arthritis severity (mean arthritic index at 3.1 in arthritic group vs. 2.0 in VP treated group; p<0.01) by restoring synovial homeostasis and decreasing systemic inflammation. YAP/TAZ transcriptional activity also enhanced synovial membrane stiffening in vivo, thus creating a vicious loop with the maintenance of YAP/TAZ activation over time in FLS. YAP/TAZ inhibition was also effective in another inflammatory model of mouse colitis. Conclusion: Our work reveals that YAP/TAZ were critical factors during arthritis. Thus, their transcriptional inhibition could be relevant to treat inflammatory related diseases.


Assuntos
Artrite Reumatoide/patologia , Sinoviócitos/patologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Artrite Reumatoide/metabolismo , Células Cultivadas , Colite/metabolismo , Colite/patologia , Humanos , Inflamação , Camundongos , Osteoartrite/metabolismo , Osteoartrite/patologia , Fenótipo , Ratos , Sinoviócitos/metabolismo
17.
Front Physiol ; 12: 749464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737712

RESUMO

Bone adaptation to spaceflight results in bone loss at weight bearing sites following the absence of the stimulus represented by ground force. The rodent hindlimb unloading model was designed to mimic the loss of mechanical loading experienced by astronauts in spaceflight to better understand the mechanisms causing this disuse-induced bone loss. The model has also been largely adopted to study disuse osteopenia and therefore to test drugs for its treatment. Loss of trabecular and cortical bone is observed in long bones of hindlimbs in tail-suspended rodents. Over the years, osteocytes have been shown to play a key role in sensing mechanical stress/stimulus via the ECM-integrin-cytoskeletal axis and to respond to it by regulating different cytokines such as SOST and RANKL. Colder experimental environments (~20-22°C) below thermoneutral temperatures (~28-32°C) exacerbate bone loss. Hence, it is important to consider the role of environmental temperatures on the experimental outcomes. We provide insights into the cellular and molecular pathways that have been shown to play a role in the hindlimb unloading and recommendations to minimize the effects of conditions that we refer to as confounding factors.

18.
Curr Osteoporos Rep ; 19(6): 626-636, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767119

RESUMO

PURPOSE OF REVIEW: Osteocytes are considered to be the cells responsible for mastering the remodeling process that follows the exposure to unloading conditions. Given the invasiveness of bone biopsies in humans, both rodents and in vitro culture systems are largely adopted as models for studies in space missions or in simulated microgravity conditions models on Earth. RECENT FINDINGS: After a brief recall of the main changes in bone mass and osteoclastic and osteoblastic activities in space-related models, this review focuses on the potential role of osteocytes in directing these changes. The role of the best-known signalling molecules is questioned, in particular in relation to osteocyte apoptosis. The mechanotransduction actors identified in spatial conditions and the problems related to fluid flow and shear stress changes, probably enhanced by the alteration in fluid flow and lack of convection during spaceflight, are recalled and discussed.


Assuntos
Osteócitos/fisiologia , Voo Espacial , Ausência de Peso , Envelhecimento/fisiologia , Animais , Apoptose/fisiologia , Humanos , Mecanotransdução Celular/fisiologia , Camundongos
19.
PLoS One ; 15(12): e0243098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296408

RESUMO

Insights into the effects of osteoarthritis (OA) and physical interventions on the musculoskeletal system are limited. Our goal was to analyze musculoskeletal changes in OA mice and test the efficacy of 8-week exposure to hypergravity, as a replacement of physical activity. 16-week-old male (C57BL/6J) mice allocated to sham control and OA groups not centrifuged (Ctrl 1g and OA 1g, respectively) or centrifuged at 2g acceleration (Ctrl 2g and OA 2g). OA 1g displayed decreased trabecular bone in the proximal tibia metaphysis and increased osteoclastic activity and local TNFα gene expression, all entirely prevented by 2g gravitational therapy. However, while cortical bone of tibia midshaft was preserved in OA 1g (vs. ctrl), it is thinner in OA 2g (vs. OA 1g). In the hind limb, OA at 1g increased fibers with lipid droplets by 48% in the tibialis anterior, a fact fully prevented by 2g. In Ctrl, 2g increased soleus, tibialis anterior and gastrocnemius masses. In the soleus of both Ctrl and OA, 2g induced larger fibers and a switch from type-II to type-I fiber. Catabolic (myostatin and its receptor activin RIIb and visfatine) and anabolic (FNDC5) genes dramatically increased in Ctrl 2g and OA 2g (p<0.01 vs 1g). Nevertheless, the overexpression of FNDC5 (and follistatine) was smaller in OA 2g than in Ctrl 2g. Thus, hypergravity in OA mice produced positive effects for trabecular bone and muscle typology, similar to resistance exercises, but negative effects for cortical bone.


Assuntos
Hipergravidade , Sistema Musculoesquelético/patologia , Osteoartrite do Joelho/terapia , Animais , Osso Esponjoso/patologia , Diáfises/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Osteoartrite do Joelho/patologia , Tíbia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...