Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38248381

RESUMO

Ketones are well-known biomarkers of fat oxidation produced in the liver as a result of lipolysis. These biomarkers include acetoacetic acid and ß-hydroxybutyric acid in the blood/urine and acetone in our breath and skin. Monitoring ketone production in the body is essential for people who use caloric intake deficit to reduce body weight or use ketogenic diets for wellness or therapeutic treatments. Current methods to monitor ketones include urine dipsticks, capillary blood monitors, and breath analyzers. However, these existing methods have certain disadvantages that preclude them from being used more widely. In this work, we introduce a novel acetone sensor device that can detect acetone levels in breath and overcome the drawbacks of existing sensing approaches. The critical element of the device is a robust sensor with the capability to measure acetone using a complementary metal oxide semiconductor (CMOS) chip and convenient data analysis from a red, green, and blue deconvolution imaging approach. The acetone sensor device demonstrated sensitivity of detection in the micromolar-concentration range, selectivity for detection of acetone in breath, and a lifetime stability of at least one month. The sensor device utility was probed with real tests on breath samples using an established blood ketone reference method.


Assuntos
Acetona , Líquidos Corporais , Humanos , Cetonas , Ácido 3-Hidroxibutírico , Biomarcadores
2.
ACS Appl Bio Mater ; 5(12): 5682-5692, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36368008

RESUMO

Recently, decellularized plant biomaterials have been explored for their use as tissue engineered substitutes. Herein, we expanded upon the investigation of the mechanical properties of these materials to explore their elasticity as many anatomical areas of the body require biomechanical dynamism. We first constructed a device to secure the scaffold and induce a strain within the physiological range of the normal human adult lung during breathing (12-20 movements/min; 10-20% elongation). Results showed that decellularized spinach leaves can support cyclic strain for 24 h and displayed heterogeneous local strain values (7.76-15.88%) as well as a Poisson's ratio (0.12) similar to that of mammalian lungs (10.67-19.67%; 0.01), as opposed to an incompressible homogeneous standard polymer (such as PDMS (10.85-12.71%; 0.4)). Imaging and mechanical testing showed that the vegetal scaffold exhibited strain hardening but maintained its structural architecture and water retention capacity, suggesting an unaltered porosity. Interestingly, we also showed that cells seeded on the scaffold can also sense the mechanical strain as demonstrated by a nuclear reorientation perpendicular to strain direction (63.3° compared to 41.2° for nonstretched cells), a nuclear location of YAP and increased expression of YAP target genes, a high cytoplasmic calcium level, and an elevated expression level of collagen genes (COL1A1, COL3A1, COL4A1, and COL6A) with an increased collagen secretion at the protein level. Taken together, these data demonstrated that decellularized plant leaf tissues have an inherent elastic property similar to that found in the mammalian system to which cells can sense and respond.


Assuntos
Materiais Biocompatíveis , Spinacia oleracea , Animais , Humanos , Spinacia oleracea/metabolismo , Colágeno/metabolismo , Elasticidade , Engenharia Tecidual , Mamíferos/metabolismo
3.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214262

RESUMO

Energy Expenditure (EE) (kcal/day), a key element to guide obesity treatment, is measured from CO2 production, VCO2 (mL/min), and/or O2 consumption, VO2 (mL/min). Current technologies are limited due to the requirement of wearable facial accessories. A novel system, the Smart Pad, which measures EE via VCO2 from a room's ambient CO2 concentration transients was evaluated. Resting EE (REE) and exercise VCO2 measurements were recorded using Smart Pad and a reference instrument to study measurement duration's influence on accuracy. The Smart Pad displayed 90% accuracy (±1 SD) for 14-19 min of REE measurement and for 4.8-7.0 min of exercise, using known room's air exchange rate. Additionally, the Smart Pad was validated measuring subjects with a wide range of body mass indexes (BMI = 18.8 to 31.4 kg/m2), successfully validating the system accuracy across REE's measures of ~1200 to ~3000 kcal/day. Furthermore, high correlation between subjects' VCO2 and λ for CO2 accumulation was observed (p < 0.00001, R = 0.785) in a 14.0 m3 sized room. This finding led to development of a new model for REE measurement from ambient CO2 without λ calibration using a reference instrument. The model correlated in nearly 100% agreement with reference instrument measures (y = 1.06x, R = 0.937) using an independent dataset (N = 56).


Assuntos
Dióxido de Carbono , Metabolismo Energético , Índice de Massa Corporal , Calorimetria Indireta , Humanos , Consumo de Oxigênio , Reprodutibilidade dos Testes , Descanso
4.
J Breath Res ; 15(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33339005

RESUMO

Weight disorders are strikingly prevalent globally and can contribute to a wide array of potentially fatal diseases spanning from type II diabetes to coronary heart disease. These disorders have a common cause: poor calorie balance. Since energy expenditure (EE) (kcal d-1) constitutes one half of the calorie balance equation (the other half being food intake), its measurement could be of great value to those suffering from weight disorders. A technique for contact free assessment of EE is presented, which only relies on CO2concentration monitoring within a sealed office space, and assessment of carbon dioxide production rate (VCO2). Twenty healthy subjects were tested in a cross-sectional study to evaluate the performance of the aforementioned technique in measuring both resting EE (REE) and exercise EE using the proposed system (the 'SmartPad') and a U.S. Food and Drug Administration (FDA) cleared gold standard reference instrument for EE measurement. For VCO2and EE measurements, the method showed a correlation slope of 1.00 and 1.03 with regression coefficients of 0.99 and 0.99, respectively, and Bland-Altman plots with a mean bias = -0.232% with respect to the reference instrument. Furthermore, two subjects were also tested as part of a proof-of-concept longitudinal study where EE patterns were simultaneously tracked with body weight, sleep, stress, and step counts using a smartwatch over the course of a month, to determine correlation between the aforementioned parameters and EE. Analysis revealed moderately high correlation coefficients (Pearson'sr) for stress (raverage= 0.609) and body weight (raverage= 0.597) for the two subjects. The new SmartPad method was demonstrated to be a promising technique for EE measurement under free-living conditions.


Assuntos
Dióxido de Carbono , Diabetes Mellitus Tipo 2 , Testes Respiratórios , Calorimetria Indireta , Dióxido de Carbono/metabolismo , Estudos Transversais , Metabolismo Energético , Humanos , Estudos Longitudinais , Estados Unidos , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...