Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20241364

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV2 infection in otherwise healthy children. Here, we define immune abnormalities in MIS-C compared to adult COVID-19 and pediatric/adult healthy controls using single-cell RNA sequencing, antigen receptor repertoire analysis, unbiased serum proteomics, and in vitro assays. Despite no evidence of active infection, we uncover elevated S100A-family alarmins in myeloid cells and marked enrichment of serum proteins that map to myeloid cells and pathways including cytokines, complement/coagulation, and fluid shear stress in MIS-C patients. Moreover, NK and CD8 T cell cytotoxicity genes are elevated, and plasmablasts harboring IgG1 and IgG3 are expanded. Consistently, we detect elevated binding of serum IgG from severe MIS-C patients to activated human cardiac microvascular endothelial cells in culture. Thus, we define immunopathology features of MIS-C with implications for predicting and managing this SARS-CoV2-induced critical illness in children.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-294231

RESUMO

Emerging clinical data demonstrates that COVID-19, the disease caused by SARS-CoV2, is a syndrome that variably affects nearly every organ system. Indeed, the clinical heterogeneity of COVID-19 ranges from relatively asymptomatic to severe disease with death resultant from multiple constellations of organ failures. In addition to genetics and host characteristics, it is likely that viral dissemination is a key determinant of disease manifestation. Given the complexity of disease expression, one major limitation in current animal models is the ability to capture this clinical heterogeneity due to technical limitations related to murinizing SARS-CoV2 or humanizing mice to render susceptible to infection. Here we describe a murine model of COVID-19 using respiratory infection with the native mouse betacoronavirus MHV-A59. We find that whereas high viral inoculums uniformly led to hypoxemic respiratory failure and death, lethal dose 50% (LD50) inoculums led to a recapitulation of most hallmark clinical features of COVID-19, including lymphocytopenias, heart and liver damage, and autonomic dysfunction. We find that extrapulmonary manifestations are due to viral metastasis and identify a critical role for type-I but not type-III interferons in preventing systemic viral dissemination. Early, but not late treatment with intrapulmonary type-I interferon, as well as convalescent serum, provided significant protection from lethality by limiting viral dissemination. We thus establish a Biosafety Level II model that may be a useful addition to the current pre-clinical animal models of COVID-19 for understanding disease pathogenesis and facilitating therapeutic development for human translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...