Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 395(2): 393-403, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16393142

RESUMO

Enterocytes are responsible for the absorption of dietary lipids, which involves TRL [TG (triacylglycerol)-rich lipoprotein] assembly and secretion. In the present study, we analysed the effect on TRL secretion of Caco-2 enterocyte adaptation to a differential glucose supply. We showed that TG secretion in cells adapted to a low glucose supply for 2 weeks after confluence was double that of control cells maintained in high-glucose-containing medium, whereas the level of TG synthesis remained similar in both conditions. This increased secretion resulted mainly from an enlargement of the mean size of the secreted TRL. The increased TG availability for TRL assembly and secretion was not due to an increase in the MTP (microsomal TG transfer protein) activity that is required for lipid droplet biogenesis in the ER (endoplasmic reticulum) lumen, or to the channelling of absorbed fatty acids towards the monoacylglycerol pathway for TG synthesis. Interestingly, by electron microscopy and subcellular fractionation studies, we observed, in the low glucose condition, an increase in the TG content available for lipoprotein assembly in the ER lumen, with the cytosolic/microsomal TG levels being verapamil-sensitive. Overall, we demonstrate that Caco-2 enterocytes modulate TRL secretion through TG partitioning between the cytosol and the ER lumen according to the glucose supply. Our model will help in identifying the proteins involved in the control of the balance between TRL assembly and cytosolic lipid storage. This mechanism may be a way for enterocytes to regulate TRL secretion after a meal, and thus impact on our understanding of post-prandial hypertriglyceridaemia.


Assuntos
Adaptação Fisiológica , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Glucose/farmacologia , Lipoproteínas/química , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Apolipoproteínas B/metabolismo , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Retículo Endoplasmático/ultraestrutura , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/ultraestrutura , Glicogênio/metabolismo , Humanos , Lipoproteínas/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Verapamil/farmacologia
2.
J Lipid Res ; 46(2): 258-68, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15576849

RESUMO

Decrease of plasma lipid levels by polyphenols was linked to impairment of hepatic lipoprotein secretion. However, the intestine is the first epithelium that faces dietary compounds, and it contributes to lipid homeostasis by secreting triglyceride-rich lipoproteins during the postprandial state. The purpose of this study was to examine the effect of apple and wine polyphenol extracts on lipoprotein synthesis and secretion in human Caco-2/TC7 enterocytes apically supplied with complex lipid micelles. Our results clearly demonstrate that apple, but not wine, polyphenol extract dose-dependently decreases the esterification of cholesterol and the enterocyte secretion of lipoproteins. Apple polyphenols decrease apolipoprotein B (apoB) secretion by inhibiting apoB synthesis without increasing the degradation of the newly synthesized protein. Under our conditions, cholesterol uptake, apoB mRNA, and microsomal triglyceride protein activity were not modified by apple polyphenols. The main monomers present in our mixture did not interfere with the intestinal lipid metabolism. By contrast, apple procyanidins reproduced the inhibition of both cholesteryl ester synthesis and lipoprotein secretion. Overall, our results are compatible with a mechanism of action of polyphenols resulting in impaired lipid availability that could induce the inhibition of intestinal lipoprotein secretion and contribute to the hypolipidemic effect of these compounds in vivo.


Assuntos
Biflavonoides/farmacologia , Catequina/farmacologia , Colesterol/metabolismo , Enterócitos/metabolismo , Lipídeos/sangue , Lipoproteínas/metabolismo , Proantocianidinas/farmacologia , Apolipoproteínas B/metabolismo , Biflavonoides/química , Biflavonoides/metabolismo , Western Blotting , Células CACO-2 , Catequina/química , Catequina/metabolismo , Linhagem Celular , Ésteres do Colesterol/metabolismo , Primers do DNA/química , Esterificação , Flavonoides , Humanos , Imunoprecipitação , Cinética , Metabolismo dos Lipídeos , Lipoproteínas/química , Fígado/metabolismo , Malus , Micelas , Fenóis , Polifenóis , Período Pós-Prandial , Proantocianidinas/química , Proantocianidinas/metabolismo , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Triglicerídeos/metabolismo
3.
J Biol Chem ; 280(7): 5406-13, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15583007

RESUMO

Apolipoprotein (apo) A-IV, a component of triglyceride-rich lipoproteins secreted by the small intestine, has been shown to play an important role in the control of lipid homeostasis. Numerous studies have described the induction of apoA-IV gene expression by lipids, but the molecular mechanisms involved in this process remain unknown. In this study, we have demonstrated that a lipid bolus induced transcription of the apoA-IV gene in transgenic mice and that the regulatory region of the apoA-IV gene, composed of the apoC-III enhancer and the apoA-IV promoter (eC3-A4), was responsible for this induction. In enterocyte Caco-2/TC7 cells, a permanent supply of lipids at the basal pole induced expression of the apoA-IV gene both at the transcriptional level and through mRNA stabilization. ApoA-IV gene transcription and protein secretion were further induced by an apical supply of complex lipid micelles mimicking the composition of duodenal micelles, and this effect was not reproduced by apical delivery of different combinations of micelle components. Only induction of the apoA-IV gene by lipid micelles involved the participation of hepatic nuclear factor (HNF)-4, as demonstrated using a dominant negative form of this transcription factor. Accordingly, lipid micelles increased the DNA binding activity of HNF-4 on the eC3-A4 region. These results emphasize the importance of physiological delivery of dietary lipids on apoA-IV gene expression and the implication of HNF-4 in this regulation.


Assuntos
Apolipoproteínas A/genética , Polaridade Celular , Proteínas de Ligação a DNA/metabolismo , Mucosa Intestinal/metabolismo , Lipídeos/farmacologia , Micelas , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Células CACO-2 , Linhagem Celular Tumoral , Meios de Cultura/química , Proteínas de Ligação a DNA/genética , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Fator 4 Nuclear de Hepatócito , Humanos , Intestinos/citologia , Intestinos/efeitos dos fármacos , Lipídeos/administração & dosagem , Mutação/genética , Fosfoproteínas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...