Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(21): 27605-27613, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38754391

RESUMO

This study explores the impact of symmetry breaking on the ferromagnetic resonance of Bloch point (BP) nanospheres. Through standard Fourier analysis, we unveil two distinct oscillation mode groups characterized by low and high frequencies, respectively. Our findings emphasize the pivotal role of magnetic volume in shaping resonance amplitudes, providing new insights into the intricate dynamics of BP states. The investigation of geometric parameters reveals a quasi-monotonic decrease in resonance frequencies as a function of the asymmetry degree attributed to symmetry-breaking induced by geometric modifications. Spatial distribution analysis showcases unique resonance frequencies for the upper and lower BP hemispheres, highlighting the nuanced impact of the geometry on mode excitation. As the radius increases, additional modes emerge, demonstrating a compelling relationship between the magnetic volume and frequency. Phase analysis unveils coherent oscillations within each BP hemisphere, offering valuable insights into the rotational directions of the excitation poles. Beyond fundamental understanding, our study opens avenues for innovative applications, suggesting the potential use of nanospheres in advanced magnetic sensing, data storage, and nanoscale spintronic devices.

2.
Sci Rep ; 13(1): 7171, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137960

RESUMO

Three-dimensional topological textures have become a topic of intense interest in recent years. This work uses analytical and numerical calculations to determine the magnetostatic field produced by a Bloch point (BP) singularity confined in a magnetic nanosphere. It is observed that BPs hosted in a nanosphere generate magnetic fields with quadrupolar nature. This finding is interesting because it shows the possibility of obtaining quadrupole magnetic fields with just one magnetic particle, unlike other propositions considering arrays of magnetic elements to generate this kind of field. The obtained magnetostatic field allows us to determine the interaction between two BPs as a function of the relative orientation of their polarities and the distance between them. It is shown that depending on the rotation of one BP related to the other, the magnetostatic interaction varies in strength and character, being attractive or repulsive. The obtained results reveal that the BP interaction has a complex behavior beyond topological charge-mediated interaction.

3.
Sci Rep ; 9(1): 14309, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586087

RESUMO

We study the relationship between the winding number of magnetic merons and the Gaussian curvature of two-dimensional magnetic surfaces. We show that positive (negative) Gaussian curvatures privilege merons with positive (negative) winding number. As in the case of unidimensional domain walls, we found that chirality is connected to the polarity of the core. Both effects allow to predict the topological properties of metastable states knowing the geometry of the surface. These features are related with the recently predicted Dzyaloshinskii-Moriya emergent term of curved surfaces. The presented results are at our knowledge the first ones drawing attention about a direct relation between geometric properties of the surfaces and the topology of the hosted solitons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...