Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 169: 115882, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984300

RESUMO

An archetypal anti-inflammatory compound against cytokine storm would inhibit it without suppressing the innate immune response. AG5, an anti-inflammatory compound, has been developed as synthetic derivative of andrographolide, which is highly absorbable and presents low toxicity. We found that the mechanism of action of AG5 is through the inhibition of caspase-1. Interestingly, we show with in vitro generated human monocyte derived dendritic cells that AG5 preserves innate immune response. AG5 minimizes inflammatory response in a mouse model of lipopolysaccharide (LPS)-induced lung injury and exhibits in vivo anti-inflammatory efficacy in the SARS-CoV-2-infected mouse model. AG5 opens up a new class of anti-inflammatories, since contrary to NSAIDs, AG5 is able to inhibit the cytokine storm, like dexamethasone, but, unlike corticosteroids, preserves adequately the innate immunity. This is critical at the early stages of any naïve infection, but particularly in SARS-CoV-2 infections. Furthermore, AG5 showed interesting antiviral activity against SARS-CoV-2 in humanized mice.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Humanos , Camundongos , Animais , Imunidade Inata , SARS-CoV-2 , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico
2.
Nanomaterials (Basel) ; 11(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062789

RESUMO

To understand the factors that control the formation of the biomolecular corona, a systematic study of the adsorption of several miRNAs shown to be important in prostate cancer on amine-functionalized mesoporous silica nanoparticles (MSN-NH2) has been performed. Process parameters including miRNA type, nanoparticle concentration, incubation temperature and incubation time were investigated, as well as the potential competition for adsorption between different miRNA molecules. The influence of proteins and particle PEGylation on miRNA adsorption were also explored. We found that low particle concentrations and physiological temperature both led to increased miRNA adsorption. Adsorption of miRNA was also higher when proteins were present in the same solution; reducing or preventing protein adsorption by PEGylating the MSNs hindered adsorption. Finally, the amount of miRNA adsorbed from human serum by MSN-NH2 was compared to a commercial miRNA purification kit (TaqMan®, Life Technologies, Carlsbad, CA, USA). MSN-NH2 adsorbed six times as much miRNA as the commercial kit, demonstrating higher sensitivity to subtle up- and downregulation of circulating miRNA in the blood of patients.

3.
Mater Sci Eng C Mater Biol Appl ; 117: 111263, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919629

RESUMO

Post-synthetic modification of covalent organic frameworks (COFs) is strongly demanded in order to provide additional functionalities to their structures. However, the introduction of functional groups during the synthesis of two dimensional COFs (2D COFs) is highly discouraged, as they can interfere with the π-π stacking forces, compromising framework integrity. Here, we show that direct incorporation of nucleophyllic groups (e.g., primary amines) on pore wall during the synthesis of a 2D-COF (COF-5) is possible by sequential substitution of original monomers. Subsequent bonding of the antitumor drug camptothecin results in a stable hydrophobic drug delivery system. Water adsorption isotherms modelling indicates that the insertion of CPT ligand in the framework promotes a hydrophobic effect that protects a region of COF chain from boronate ester hydrolysis and resulting degradation, which is also proven by stability testing in physiological conditions. Furthermore, this hydrophobic nature favors cell internalization kinetics by promoting interactions with the lipophilic cell membrane. To the best of our knowledge, this is the first case of a stable drug delivery system based on covalently conjugated COFs.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Estruturas Metalorgânicas , Antineoplásicos/farmacologia , Camptotecina/farmacologia , Interações Hidrofóbicas e Hidrofílicas
4.
ACS Omega ; 4(5): 8852-8861, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459973

RESUMO

Diagnostic tests based on proteomics analysis can have significant advantages over more traditional biochemical tests. However, low molecular weight (MW) protein biomarkers are difficult to identify by standard mass spectrometric analysis, as they are usually present at low concentrations and are masked by more abundant resident proteins. We have previously shown that mesoporous silica nanoparticles are able to capture a predominantly low MW protein fraction from the serum, as compared to the protein corona (PC) adsorbed onto dense silica nanoparticles. In this study, we begin by further investigating this effect using liquid chromatography-mass spectrometry (LC-MS)/MS and thermogravimetric analysis (TGA) to compare the MW of the proteins in the coronas of mesoporous silica nanoparticles with the same particle size but different pore diameters. Next, we examine the process by which two proteins, one small and one large, adsorb onto these mesoporous silica nanoparticles to establish a theory of why the corona becomes enriched in low MW proteins. Finally, we use this information to develop a novel system for the diagnosis of prostate cancer. An elastic net statistical model was applied to LC-MS/MS protein coronas from the serum of 22 cancer patients, identifying proteins specific to each patient group. These studies help to explain why low MW proteins predominate in the coronas of mesoporous silica nanoparticles, and they illustrate the ability of this information to supplement more traditional diagnostic tests.

5.
J Control Release ; 171(1): 63-72, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23830980

RESUMO

Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300µm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups.


Assuntos
Proteínas de Bactérias/administração & dosagem , Corpos de Inclusão/química , Animais , Proteínas de Bactérias/química , Materiais Biocompatíveis/química , Células Cultivadas , Quitosana/química , Escherichia coli , Fibroblastos , Células HeLa , Humanos , Ácido Láctico/química , Camundongos , Células NIH 3T3 , Poliésteres/química , Polímeros/química , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...