Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (158)2020 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-32364543

RESUMO

Lignocellulosic materials are plant-derived feedstocks, such as crop residues (e.g., corn stover, rice straw, and sugar cane bagasse) and purpose-grown energy crops (e.g., miscanthus, and switchgrass) that are available in large quantities to produce biofuels, biochemicals, and animal feed. Plant polysaccharides (i.e., cellulose, hemicellulose, and pectin) embedded within cell walls are highly recalcitrant towards conversion into useful products. Ammonia fiber expansion (AFEX) is a thermochemical pretreatment that increases accessibility of polysaccharides to enzymes for hydrolysis into fermentable sugars. These released sugars can be converted into fuels and chemicals in a biorefinery. Here, we describe a laboratory-scale batch AFEX process to produce pretreated biomass on the gram-scale without any ammonia recycling. The laboratory-scale process can be used to identify optimal pretreatment conditions (e.g., ammonia loading, water loading, biomass loading, temperature, pressure, residence time, etc.) and generates sufficient quantities of pretreated samples for detailed physicochemical characterization and enzymatic/microbial analysis. The yield of fermentable sugars from enzymatic hydrolysis of corn stover pretreated using the laboratory-scale AFEX process is comparable to pilot-scale AFEX process under similar pretreatment conditions. This paper is intended to provide a detailed standard operating procedure for the safe and consistent operation of laboratory-scale reactors for performing AFEX pretreatment of lignocellulosic biomass.


Assuntos
Amônia/farmacologia , Biomassa , Lignina/metabolismo , Biocombustíveis , Reatores Biológicos , Glucose/análise , Poaceae , Temperatura , Xilose/análise
2.
Biotechnol Bioeng ; 117(4): 1241-1246, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31840804

RESUMO

Pretreatment and densification of agricultural residues at regional depots can simplify feedstock supply logistics for the production of biofuels in commercial biorefineries. We have previously reported the performance of a laboratory-scale (5 L) packed-bed ammonia fiber expansion (AFEX) reactor system, which showed significant promise for biomass pretreatment at distributed depots. In this paper, we describe the performance of a 90-fold larger pilot-scale packed-bed AFEX-reactor system, used to produce over 1,500 batches (~36 tons) of pretreated crop residues over a 5-year period. Virtually all unreacted ammonia was successfully removed from the biomass, and 76% of the ammonia was recycled and reused. Pretreatment performance at pilot scale was comparable to laboratory-scale, averaging 74% glucose and 75% xylose yield in a standard test compared with 71% and 73%, respectively. Other operating and maintenance aspects are also discussed.


Assuntos
Amônia/química , Biomassa , Reatores Biológicos , Produtos Agrícolas , Desenho de Equipamento , Projetos Piloto , Poaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...