Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611021

RESUMO

Neuroblastoma (NB) is an embryonal tumor arising from the sympathetic central nervous system. The epidermal growth factor (EGF) plays a role in NB growth and metastatic behavior. Recently, we have demonstrated that cathepsin D (CD) contrasts EGF-induced NB cell growth in 2D by downregulating EGFR/MAPK signaling. Aggressive NB is highly metastatic to the bone and the brain. In the metastatic process, adherent cells detach to form clusters of suspended cells that adhere once they reach the metastatic site and form secondary colonies. Whether CD is involved in the survival of metastatic NB clones is not known. Therefore, in this study, we addressed how CD differentially affects cell growth in suspension versus the adherent condition. To mimic tumor heterogeneity, we co-cultured transgenic clones silenced for or overexpressing CD. We compared the growth kinetics of such mixed clones in 2D and 3D models in response to EGF, and we found that the Over CD clone had an advantage for growth in suspension, while the CD knocked-down clone was favored for the adherent growth in 2D. Interestingly, on switching from 3D to 2D culture conditions, the expression of E-cadherin and of N-cadherin increased in the KD-CD and Over CD clones, respectively. The fact that CD plays a dual role in cancer cell growth in 2D and 3D conditions indicates that during clonal evolution, subclones expressing different level of CD may arise, which confers survival and growth advantages depending on the metastatic step. By searching the TCGA database, we found up to 38 miRNAs capable of downregulating CD. Interestingly, these miRNAs are associated with biological processes controlling cell adhesion and cell migration. The present findings support the view that during NB growth on a substrate or when spreading as floating neurospheres, CD expression is epigenetically modulated to confer survival advantage. Thus, epigenetic targeting of CD could represent an additional strategy to prevent NB metastases.

2.
Cancer Lett ; 582: 216589, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097133

RESUMO

Cholangiocarcinoma (CCA), the malignant tumor of bile duct epithelial cells, is a relatively rare yet highly lethal cancer. In this work, we tested the ability of Resveratrol (RV) to prevent and cure CCA xenograft in nude mice and investigated molecular mechanisms underpinning such anticancer effect. Human CCA cells were xenografted in mice that were or not treated prior to or after to transplantation with RV. Tumor growth was monitored and analyzed for the markers of cell proliferation, apoptosis, and autophagy. TCGA was interrogated for the molecules possibly targeted by RV. RV could inhibit the growth of human CCA xenograft when administered after implantation and could reduce the growth or even impair the implantation of the tumors when administered prior the transplantation. RV inhibited CCA cell proliferation, induced apoptosis with autophagy, and strongly reduced the presence of CAFs and production of IL-6. Interrogation of CCA dataset in TCGA database revealed that the expression of IL-6 Receptor (IL-6R) inversely correlated with that of MAP-LC3 and BECLIN-1, and that low expression of IL-6R and of MIK67, two pathways downregulated by RV, associated with better survival of CCA patients. Our data demonstrate that RV elicits a strong preventive and curative anticancer effect in CCA by limiting the formation of CAFs and their release of IL-6, and this results in up-regulation of autophagy and apoptosis in the cancer cells. These findings support the clinical use of RV as a primary line of prevention in patients exposed at risk and as an adjuvant therapeutics in CCA patients.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Animais , Camundongos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Xenoenxertos , Interleucina-6/genética , Camundongos Nus , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/prevenção & controle , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/prevenção & controle , Proliferação de Células , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Apoptose
3.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675246

RESUMO

Cancer cells drive the glycolytic process towards the fermentation of pyruvate into lactate even in the presence of oxygen and functioning mitochondria, a phenomenon known as the "Warburg effect". Although not energetically efficient, glycolysis allows the cancer cell to synthesize the metabolites needed for cell duplication. Autophagy, a macromolecular degradation process, limits cell mass accumulation and opposes to cell proliferation as well as to cell migration. Cancer cells corrupt cancer-associated fibroblasts to release pro-inflammatory cytokines, which in turn promote glycolysis and support the metastatic dissemination of cancer cells. In mimicking in vitro this condition, we show that IL-6 promotes ovarian cancer cell migration only in the presence of glycolysis. The nutraceutical resveratrol (RV) counteracts glucose uptake and metabolism, reduces the production of reactive oxygen species consequent to excessive glycolysis, rescues the mitochondrial functional activity, and stimulates autophagy. Consistently, the lack of glucose as well as its metabolically inert analogue 2-deoxy-D-glucose (2-DG), which inhibits hexokinase 2 (HK2), trigger autophagy through mTOR inhibition, and prevents IL-6-induced cell migration. Of clinical relevance, bioinformatic analysis of The Cancer Genome Atlas dataset revealed that ovarian cancer patients bearing mutated TP53 with low expression of glycolytic markers and IL-6 receptor, together with markers of active autophagy, display a longer overall survival and are more responsive to platinum therapy. Taken together, our findings demonstrate that RV can counteract IL-6-promoted ovarian cancer progression by rescuing glycolysis-mediated inhibition of autophagy and support the view that targeting Warburg metabolism can be an effective strategy to limit the risk for cancer metastasis.


Assuntos
Interleucina-6 , Neoplasias Ovarianas , Humanos , Feminino , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Interleucina-6/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/metabolismo , Glicólise , Autofagia
4.
Biomolecules ; 12(8)2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-36008963

RESUMO

Alternative splicing allows the synthesis of different protein variants starting from a single gene. Human Beclin 1 (BECN1) is a key autophagy regulator that acts as haploinsufficient tumor suppressor since its decreased expression correlates with tumorigenesis and poor prognosis in cancer patients. Recent studies show that BECN1 mRNA undergoes alternative splicing. Here, we report on the isolation and molecular and functional characterization of three BECN1 transcript variants (named BECN1-α, -ß and -γ) in human cancer cells. In ovarian cancer NIHOVCAR3, these splicing variants were found along with the canonical wild-type. BECN1-α lacks 143 nucleotides at its C-terminus and corresponds to a variant previously described. BECN1-ß and -γ lack the BCL2 homology 3 domain and other regions at their C-termini. Following overexpression in breast cancer cells MDA-MB231, we found that BECN1-α stimulates autophagy. Specifically, BECN1-α binds to Parkin and stimulates mitophagy. On the contrary, BECN1-ß reduces autophagy with a dominant negative effect over the endogenous wild-type isoform. BECN1-γ maintains its ability to interact with the vacuolar protein sorting 34 and only has a slight effect on autophagy. It is possible that cancer cells utilize the alternative splicing of BECN1 for modulating autophagy and mitophagy in response to environmental stresses.


Assuntos
Proteínas Reguladoras de Apoptose , Proteína Beclina-1/metabolismo , Neoplasias , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteína Beclina-1/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética
5.
Biomedicines ; 10(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35625868

RESUMO

Colorectal cancer (CRC) pathogenesis is mainly driven by alterations in WNT signaling, which results in altered transcriptional activity of ß-Catenin. Mutations in APC (Adenomatous Polyposis Coli) are reflected in ß-Catenin hyperactivation and loss of proliferation control. Certain intestinal bacteria metabolites have shown the ability to limit CRC cell proliferation and CRC pathogenesis. Here, we investigated the molecular mechanism underlying the anti-proliferative activity of butyrate, a microbiota-derived short chain fatty acid, in two CRC cell lines, namely HCT116 and SW620, which bear a mutation in ß-Catenin and APC, respectively. In particular, we focused on autophagy, a lysosome-dependent degradation pathway, which was shown to control intestinal tissue homeostasis. Butyrate reduced CRC cell proliferation, as witnessed by the downregulation of proliferation markers. TCGA bioinformatic transcriptomic analysis of CTNNB1 (ß-Catenin) gene correlation in CRC patients showed that ß-Catenin negatively correlates with the autophagy gene ATG4D. In CRC cells, regardless of the mutational state of APC or ß-Catenin genes, butyrate caused the autophagy-mediated degradation of ß-Catenin; thus, preventing its transcriptional activity. Autophagy gene silencing restored ß-Catenin levels, allowing it to translocate into the nucleus to promote the expression of downstream genes associated with cancer cell proliferation. CRC-affected patients show driver mutations in the WNT pathway; thus, targeting its crucial effector may be a promising therapeutic strategy in CRC treatment; for instance, by using ad hoc probiotics that stimulate autophagy.

6.
Cancers (Basel) ; 14(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35565270

RESUMO

Tumor dormancy is the extended period during which patients are asymptomatic before recurrence, and it represents a difficult phenomenon to target pharmacologically. The relapse of tumors, for instance arising from the interruption of dormant metastases, is frequently observed in ovarian cancer patients and determines poor survival. Inflammatory cytokines present in the tumor microenvironment likely contribute to such events. Cancer cell dormancy and autophagy are interconnected at the molecular level through ARH-I (DIRAS3) and BECLIN-1, two tumor suppressors often dysregulated in ovarian cancers. IL-6 disrupts autophagy in ovarian cancer cells via miRNAs downregulation of ARH-I, an effect contrasted by the nutraceutical protein restriction mimetic resveratrol (RV). By using three ovarian cancer cell lines with different genetic background in 2D and 3D models, the latter mimicking the growth of peritoneal metastases, we show that RV keeps the cancer cells in a dormant-like quiescent state contrasting the IL-6 growth-promoting activity. Mechanistically, this effect is mediated by BECLIN-1-dependent autophagy and relies on the availability of ARH-I. We also show that ARH-I (DIRAS3) is a bona fide target of miR-1305, a novel oncomiRNA upregulated by IL-6 and downregulated by RV. Clinically relevant, bioinformatic analysis of a transcriptomic database showed that the high expression of DIRAS3 and MAP1LC3B mRNAs together with that of CDKN1A, directing a cellular dormant phenotype, predicts better overall survival in ovarian cancer patients, and this correlates with MIR1305 downregulation. The possibility of maintaining a permanent cell dormancy in ovarian cancer by the chronic administration of RV should be considered as a therapeutic option to prevent the "awakening" of cancer cells in response to a permissive microenvironment, thus limiting the risk of tumor relapse and metastasis.

7.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563171

RESUMO

Neuroblastoma is a malignant extracranial solid tumor arising from the sympathoadrenal lineage of the neural crest and is often associated with N-MYC amplification. Cathepsin D has been associated with chemoresistance in N-MYC-overexpressing neuroblastomas. Increased EGFR expression also has been associated with the aggressive behavior of neuroblastomas. This work aimed to understand the mechanisms linking EGFR stimulation and cathepsin D expression with neuroblastoma progression and prognosis. Gene correlation analysis in pediatric neuroblastoma patients revealed that individuals bearing a high EGFR transcript level have a good prognosis only when CTSD (the gene coding for the lysosomal protease Cathepsin D, CD) is highly expressed. Low CTSD expression was associated with poor clinical outcome. CTSD expression was negatively correlated with CCNB2, CCNA2, CDK1 and CDK6 genes involved in cell cycle division. We investigated the biochemical pathways downstream to EGFR stimulation in human SH-SY5Y neuroblastoma cells engineered for overexpressing or silencing of CD expression. Cathepsin D overexpression decreased the proliferative potential of neuroblastoma cells through downregulation of the pro-oncogenic MAPK signaling pathway. EGFR stimulation downregulated cathepsin D expression, thus favoring cell cycle division. Our data suggest that chemotherapeutics that inhibit the EGFR pathway, along with stimulators of cathepsin D synthesis and activity, could benefit neuroblastoma prognosis.


Assuntos
Catepsina D , Neuroblastoma , Catepsina D/genética , Catepsina D/metabolismo , Ciclo Celular/genética , Criança , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Lisossomos/metabolismo , Neuroblastoma/metabolismo , Peptídeo Hidrolases/metabolismo
8.
J Tradit Complement Med ; 12(1): 55-68, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34664025

RESUMO

Autophagy is a catabolic process that maintains internal homeostasis and energy balance through the lysosomal degradation of redundant or damaged cellular components. During virus infection, autophagy is triggered both in parenchymal and in immune cells with different finalistic objectives: in parenchymal cells, the goal is to destroy the virion particle while in macrophages and dendritic cells the goal is to expose virion-derived fragments for priming the lymphocytes and initiate the immune response. However, some viruses have developed a strategy to subvert the autophagy machinery to escape the destructive destiny and instead exploit it for virion assembly and exocytosis. Coronaviruses (like SARS-CoV-2) possess such ability. The autophagy process requires a set of proteins that constitute the core machinery and is controlled by several signaling pathways. Here, we report on natural products capable of interfering with SARS-CoV-2 cellular infection and replication through their action on autophagy. The present study provides support to the use of such natural products as adjuvant therapeutics for the management of COVID-19 pandemic to prevent the virus infection and replication, and so mitigating the progression of the disease.

9.
Cells ; 10(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34831435

RESUMO

Background: Ovarian cancer progression and invasiveness are promoted by a range of soluble factors released by cancer cells and stromal cells within the tumor microenvironment. Our previous studies demonstrated that resveratrol (RV), a nutraceutical and caloric restriction mimetic with tumor-suppressive properties, counteracts cancer cell motility induced by stromal IL-6 by upregulating autophagy. Lysophosphatidic acid (LPA), a bioactive phospholipid that shows elevated levels in the tumor microenvironment and the ascites of ovarian cancers, stimulates the growth and tissue invasion of cancer cells. Whether LPA elicits these effects by inhibiting autophagy and through which pathway and whether RV can counteract the same remain obscure. Aims: To investigate the molecular pathways involved in LPA-induced ovarian cancer malignancy, particularly focusing on the role of autophagy, and the ability of RV to counteract LPA activity. Results: LPA stimulated while RV inhibited ovarian cancer cell migration. Transcriptomic and bioinformatic analyses showed an opposite regulation by LPA and RV of genes linked to epithelial-to-mesenchymal transition (EMT) and autophagy with involvement of the PI3K-AKT, JAK-STAT and Hedgehog (Hh) pathways. LPA upregulated the Hh and EMT members GLI1, BMI-1, SNAIL-1 and TWIST1 and inhibited autophagy, while RV did the opposite. Similar to the inhibitors of the Hh pathway, RV inhibited LPA-induced cancer cell migration and 3D growth of ovarian cancer cells. BMI-1 silencing prevented LPA-induced EMT, restored autophagy and hampered cell migration, resembling the effects of RV. TCGA data analyses indicated that patients with low expression of Hh/EMT-related genes together with active autophagy flux tended to have a better prognosis and this correlates with a more effective response to platinum therapy. In in vitro 3D spheroids, LPA upregulated BMI-1, downregulated autophagy and inhibited platinum toxicity while RV and Hh inhibitors restored autophagy and favored BAX-mediated cell death in response to platinum. Conclusions: By inhibiting the Hh pathway and restoration of autophagy, RV counteracts LPA-induced malignancy, supporting its inclusion in the therapy of ovarian cancer for limiting metastasis and chemoresistance.


Assuntos
Autofagia , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/metabolismo , Neoplasias Ovarianas/patologia , Platina/farmacologia , Resveratrol/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Humanos , Lisofosfolipídeos , Neoplasias Ovarianas/genética , Complexo Repressor Polycomb 1/metabolismo , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
10.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34681227

RESUMO

Methamphetamine (METH) is a widely abused psychostimulant and a stress-inducing compound, which leads to neurotoxicity for nigrostriatal dopamine (DA) terminals in rodents and primates including humans. In vitro studies indicate that autophagy is a strong modulator of METH toxicity. In detail, suppressing autophagy increases METH toxicity, while stimulating autophagy prevents METH-induced toxicity in cell cultures. In the present study, the role of autophagy was investigated in vivo. In the whole brain, METH alone destroys meso-striatal DA axon terminals, while fairly sparing DA cell bodies within substantia nigra pars compacta (SNpc). No damage to either cell bodies or axons from ventral tegmental area (VTA) is currently documented. According to the hypothesis that ongoing autophagy prevents METH-induced DA toxicity, we tested whether systemic injection of autophagy inhibitors such as asparagine (ASN, 1000 mg/Kg) or glutamine (GLN, 1000 mg/Kg), may extend METH toxicity to DA cell bodies, both within SNpc and VTA, where autophagy was found to be inhibited. When METH (5 mg/Kg × 4, 2 h apart) was administered to C57Bl/6 mice following ASN or GLN, a frank loss of cell bodies takes place within SNpc and a loss of both axons and cell bodies of VTA neurons is documented. These data indicate that, ongoing autophagy protects DA neurons and determines the refractoriness of cell bodies to METH-induced toxicity.

11.
Cancers (Basel) ; 13(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925189

RESUMO

BACKGROUND: Interleukin-6 (IL-6) released by cancer-associated fibroblasts (CAFs) has been shown to associate with the malignant behavior of cholangiocarcinoma (CCA). Here, we aimed to validate with clinical and molecular data the hypothesis that CAF infiltration and release of IL-6 predict poor prognosis in CCA patients following dysregulation of autophagy in cancer cells. METHODS: Stromal IL-6 and cancer-cell-associated autophagy proteins LC3 and p62 were assayed by Tissue MicroArray immunohistochemistry and their expression correlated with overall survival (OS) in a cohort of 70 CCA patients. The 5-FU cytotoxicity and autophagy were determined in CCA cells cultured with CAF-conditioned medium. RESULTS: We show that patients bearing a CCA with low production of stromal IL-6 and active autophagy flux in the cancer cells have the best prognosis and this correlates with a more effective response to post-operative chemotherapy. A similar trend was observed in CCA patients from the TCGA database. In vitro genetic manipulation of IL-6 production by primary CAFs isolated from human CCA showed that IL-6 impairs the autophagy-associated apoptotic response to 5-FU in human CCA cells. Stromal IL-6 inhibition of autophagy in cancer cells was confirmed in an animal model of CCA. CONCLUSION: Our data support a therapeutic strategy that includes autophagy-enhancing drugs along with adjuvants limiting the stromal inflammation (i.e., the secretion of IL-6) to improve the survival of CCA patients.

12.
Biomedicines ; 9(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670664

RESUMO

BACKGROUND: BRCA1, BECN1 and TP53 are three tumor suppressor genes located on chromosome 17 and frequently found deleted, silenced, or mutated in many cancers. These genes are involved in autophagy, apoptosis, and drug resistance in ovarian cancer. Haploinsufficiency or loss-of-function of either TP53, BRCA1 or BECN1 correlates with enhanced predisposition to cancer development and progression, and chemoresistance. Expectedly, the combined altered expression of these three tumor suppressor genes worsens the prognosis of ovarian cancer patients. However, whether such a genotypic pattern indeed affects the chemo-responsiveness to standard chemotherapy thus worsening patients' survival has not been validated in a large cohort of ovarian cancer patients. AIM: We interrogated datasets from the TCGA database to analyze how the expression of these three tumor suppressor genes impacts on the clinical response to platinum-based chemotherapy thus affecting the survival of ovarian cancer patients. RESULTS AND CONCLUSION: Compared to EOC with homozygous expression of BECN1 and BRCA1, tumors expressing low mRNA expression of these two tumor suppressor genes (either because of shallow (monoallelic) co-deletion or of promoter hypermethylation), showed higher sensitivity to platinum-based therapies and were associated with a better prognosis of ovarian cancer-bearing patients. This outcome was independent of TP53 status, though it was statistically more significant in the cohort of patients with mutated TP53. Thus, sensitivity to platinum therapy (and probably to other chemotherapeutics) correlates with low expression of a combination of critical tumor suppressor genes. Our study highlights the importance of thoroughly assessing the genetic lesions of the most frequently mutated genes to stratify the patients in view of a personalized therapy. More importantly, the present findings suggest that targeting the function of both BECN1 and BRCA1 could be a strategy to restore chemosensitivity in refractory tumors.

13.
Nanotheranostics ; 5(2): 197-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564618

RESUMO

Smart drug delivery systems are required for the site-specific drug targeting to enhance the therapeutic efficiency of a drug. Resveratrol (RV) is a polyphenolic compound with anti-cancer activity. However, its poor aqueous solubility and non-selectivity are the major challenges for its employment in cancer therapy. In this work, we present the synthesis of RV-loaded glutathione responsive cyclodextrin nanosponges (RV-GSH-NSs) to improve the therapeutic efficiency and selective delivery of RV. The drug loading and encapsulation efficiency were 16.12% and 80.64%, respectively. The in vitro release profile confirmed that RV release was enhanced in response to external glutathione (GSH). Nude NSs were not toxic per se to human fibroblasts when administered for up to 72 h at the highest dose. Cell internalization studies confirmed that RV-GSH-NSs were preferentially up-taken by tumor cells compared to non-tumorigenic cells. Accordingly, RV showed selective toxicity to cancer cells compared to normal cells. GSH depletion by buthionine sulfoximine, a potent inhibitor of its synthesis, reflected in a significant decrease of the NSs accumulation, and consequently resulted in a drastic reduction of RV-mediated toxic effects in cancer cells. These findings demonstrate that GSH- responsive NSs represent an effective delivery system for targeting cancer cells by harnessing the differential tumor characteristics in terms of redox status in parallel with the limitation of side effects toward normal cells.


Assuntos
Ciclodextrinas/química , Glutationa/química , Nanoestruturas , Resveratrol/farmacologia , Linhagem Celular Tumoral , Humanos
14.
J Cancer Prev ; 26(4): 224-236, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35047448

RESUMO

Cancer is one of the most frequently diagnosed diseases, and despite the continuous efforts in searching for new and more effective treatments, its morbidity and mortality remain a significant health problem worldwide. Calorie restriction, a dietary manipulation that consists in a reduction of the calorie intake, is gaining attention as a potential adjuvant intervention for preventing and/or fighting cancer. Several forms of energy reduction intake, which includes caloric restriction tout-court, dietary restrictions, and intermittent fasting, are being explored for their ability to prevent or slow down cancer progression. Additionally, another anti-cancer approach being under investigation relies on the use of nutraceuticals known as "Caloric Restriction Mimetics" that can provide caloric restriction-mediated benefits without subjecting the patients to a strict diet. Preclinical in vitro and in vivo studies consistently show that diet modifiers reducing the calorie have impact on tumor microenvironment and cancer metabolism, resulting in reduced growth and progression of cancer. Preliminary clinical studies show that patients subjected to a reduced nutrient/energy intake experience improved outcomes from chemo- and radiotherapy while better tolerating the side effects. Here, we review the state of the art on the therapeutic potential of calorie restriction and of caloric restriction mimetics in preventing or retarding tumor development by modulating a subset of cellular processes. The most recent clinical progresses with caloric restriction mimetics in the clinical practice are also discussed.

15.
Front Oncol ; 10: 599915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364196

RESUMO

Ovarian cancer (OC) is characterized by a high mortality rate due to the late diagnosis and the elevated metastatic potential. Autophagy, a lysosomal-driven catabolic process, contributes to the macromolecular turnover, cell homeostasis, and survival, and as such, it represents a pathway targetable for anti-cancer therapies. It is now recognized that the vascularization and the cellular composition of the tumor microenvironment influence the development and progression of OC by controlling the availability of nutrients, oxygen, growth factors, and inflammatory and immune-regulatory soluble factors that ultimately impinge on autophagy regulation in cancer cells. An increasing body of evidence indicates that OC carcinogenesis is associated, at least in the early stages, to insufficient autophagy. On the other hand, when the tumor is already established, autophagy activation provides a survival advantage to the cancer cells that face metabolic stress and protects from the macromolecules and organelles damages induced by chemo- and radiotherapy. Additionally, upregulation of autophagy may lead cancer cells to a non-proliferative dormant state that protects the cells from toxic injuries while preserving their stem-like properties. Further to complicate the picture, autophagy is deregulated also in stromal cells. Thus, changes in the tumor microenvironment reflect on the metabolic crosstalk between cancer and stromal cells impacting on their autophagy levels and, consequently, on cancer progression. Here, we present a brief overview of the role of autophagy in OC hallmarks, including tumor dormancy, chemoresistance, metastasis, and cell metabolism, with an emphasis on the bidirectional metabolic crosstalk between cancer cells and stromal cells in shaping the OC microenvironment.

16.
J Tradit Complement Med ; 10(3): 217-229, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32670816

RESUMO

BACKGROUND AND AIM: Non-coding RNAs control cell functioning through affecting gene expression and translation and their dysregulation is associated with altered cell homeostasis and diseases, including cancer. Nutraceuticals with anti-cancer therapeutic potential have been shown to modulate non-coding RNAs expression that could impact on the expression of genes involved in the malignant phenotype. EXPERIMENTAL PROCEDURE: Here, we report on the microarray profiling of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and on the associated biochemical pathways and functional processes potentially modulated in OVCAR-3 ovarian cancer cells exposed for 24 h to Resveratrol (RV), a nutraceutical that has been shown to inhibit carcinogenesis and cancer progression in a variety of human and animal models, both in vitro and in vivo. Diana tools and Gene Ontology (GO) pathway analyses along with Pubmed literature search were employed to identify the cellular processes possibly affected by the dysregulated miRNAs and lncRNAs. RESULTS AND CONCLUSION: The present data consistently support the contention that RV could exert anti-neoplastic activity via non-coding RNAs epigenetic modulation of the pathways governing cell homeostasis, cell proliferation, cell death and cell motility.

17.
Semin Cancer Biol ; 66: 34-44, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31054926

RESUMO

Despite the undeniable progress made in the last decades, cancer continues to challenge the scientists engaged in searching for an effective treatment for its prevention and cure. One of the malignant hallmarks that characterize cancer cell biology is the altered metabolism of sugars and amino acids. Autophagy is a pathway allowing the macromolecular turnover via recycling of the substrates resulting from the lysosomal degradation of damaged or redundant cell molecules and organelles. As such, autophagy guarantees the proteome quality control and cell homeostasis. Data from in vitro, in animals and in patients researches show that dysregulation of autophagy favors carcinogenesis and cancer progression, making this process an ineluctable target of cancer therapy. The autophagy process is regulated at genetic, epigenetic and post-translational levels. Targeting autophagy with epigenetic modifiers could represent a valuable strategy to prevent or treat cancer. A wealth of natural products from terrestrial and marine living organisms possess anti-cancer activity. Here, we review the experimental proofs demonstrating the ability of natural compounds to regulate autophagy in cancer via epigenetics. The hope is that in the near future this knowledge could translate into effective intervention to prevent and cure cancer.


Assuntos
Autofagia/efeitos dos fármacos , Produtos Biológicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Humanos , Transdução de Sinais/efeitos dos fármacos
18.
J Mater Chem B ; 7(35): 5376-5391, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31410434

RESUMO

The use of nanoparticles (NPs) for diagnostic and therapeutic purposes involves the risk of side effects due to the presence of reactive groups on their surface. We studied the cellular stress response to spheroid fluorescent polystyrene nanoparticles (PS-NPs) functionalized with Amino groups in two ovarian cancer cell lines differing in the expression, among others, of relevant proteins involved in endocytosis processes (Caveolin-1) and in pro-survival/pro-death pathways (PTEN and p53). While COOH-PS-NPs were not toxic, NH2-PS-NPs showed dose- and time-dependent toxicity along with the induction of autophagy. In OVCAR3 cells, which are PTEN and P53 mutated and deficient in CAV-1, autophagy was insufficient to protect the cells from NP toxicity. Accordingly, inducers of autophagy were prevented whereas the silencing of autophagy genes exacerbated NP toxicity. In contrast, in OAW42 cells, which express wild-type PTEN, P53 and CAV-1, NH2-PS-NPs strongly limited the formation of autophagosomes, along with an increased production of the mitochondrial anion superoxide and inactivation of ATG4. Preventing the production of the mitochondrial anion superoxide rescued ATG4-mediated autophagy and saved the cells. This study outlines the relevance of the genetic background in the autophagy response to toxicity provoked by NH2-functionalized PS-NPs in cancer cells.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Nanopartículas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Poliestirenos/toxicidade , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Cell Commun Signal ; 17(1): 98, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426798

RESUMO

BACKGROUND/AIM: Autophagy is a macromolecular degradation process playing a pivotal role in the maintenance of stem-like features and in the morpho-functional remodeling of the tissues undergoing differentiation. In this work we investigated the involvement of autophagy in the osteogenic differentiation of mesenchymal stem cells originated from human gingiva (HGMSC). METHODS: To promote the osteogenic differentiation of HGMSCs we employed resveratrol, a nutraceutical known to modulate autophagy and cell differentiation, together with osteoblastic inductive factors. Osteoblastic differentiation and autophagy were monitored through western blotting and immunofluorescence staining of specific markers. RESULTS: We show that HGMSCs can differentiate into osteoblasts when cultured in the presence of appropriate factors and that resveratrol accelerates this process by up-regulating autophagy. The prolonged incubation with dexamethasone, ß-glycerophosphate and ascorbic acid induced the osteogenic differentiation of HGMSCc with increased expression of autophagy markers. Resveratrol (1 µM) alone elicited a less marked osteogenic differentiation yet it greatly induced autophagy and, when added to the osteogenic differentiation factors, it provoked a synergistic effect. Resveratrol and osteogenic inductive factors synergistically induced the AMPK-BECLIN-1 pro-autophagic pathway in differentiating HGMSCs, that was thereafter downregulated in osteoblastic differentiated cells. Pharmacologic inhibition of BECLIN-1-dependent autophagy precluded the osteogenic differentiation of HGMSCs. CONCLUSIONS: Autophagy modulation is instrumental for osteoblastic differentiation of HGMSCs. The present findings can be translated into the regenerative cell therapy of maxillary / mandibular bone defects.


Assuntos
Autofagia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Autofagia/efeitos dos fármacos , Proteína Beclina-1/antagonistas & inibidores , Proteína Beclina-1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos
20.
Cell Commun Signal ; 17(1): 39, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046771

RESUMO

BACKGROUND: In the event of amino acid starvation, the cell activates two main protective pathways: Amino Acid starvation Response (AAR), to inhibit global translation, and autophagy, to recover the essential substrates from degradation of redundant self-components. Whether and how AAR and autophagy (ATG) are cross-regulated and at which point the two regulatory pathways intersect remain unknown. Here, we provide experimental evidence that the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) specifically located at the lysosome level links the AAR with the autophagy pathway. METHODS: As an inducer of the AAR, we used halofuginone (HF), an alkaloid that binds to the prolyl-tRNA synthetase thus mimicking the unavailability of proline (PRO). Induction of AAR was determined assessing the phosphorylation of the eukaryotic translation initiation factor (eIF) 2α. Autophagy was monitored by assessing the processing and accumulation of microtubule-associated protein 1 light chain 3 isoform B (LC3B) and sequestosome-1 (p62/SQSTM1) levels. The activity of mTORC1 was monitored through assessment of the phosphorylation of mTOR, (rp)S6 and 4E-BP1. Global protein synthesis was determined by puromycin incorporation assay. mTORC1 presence on the membrane of the lysosomes was monitored by cell fractionation and mTOR expression was determined by immunoblotting. RESULTS: In three different types of human cancer cells (thyroid cancer WRO cells, ovarian cancer OAW-42 cells, and breast cancer MCF-7 cells), HF induced both the AAR and the autophagy pathways time-dependently. In WRO cells, which showed the strongest induction of autophagy and of AAR, global protein synthesis was little if any affected. Consistently, 4E-BP1 and (rp)S6 were phosphorylated. Concomitantly, mTOR expression and activation declined along with its detachment from the lysosomes and its degradation by the proteasome, and with the nuclear translocation of transcription factor EB (TFEB), a transcription factor of many ATG genes. The extra supplementation of proline rescued all these effects. CONCLUSIONS: We demonstrate that the AAR and autophagy are mechanistically linked at the level of mTORC1, and that the lysosome is the central hub of the cross-talk between these two metabolic stress responses.


Assuntos
Autofagia/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Piperidinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Quinazolinonas/farmacologia , Aminoácidos/deficiência , Aminoácidos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...