Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 263(Pt B): 114468, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32276131

RESUMO

The growing use of graphene-based nanomaterials (GBNs) for various applications increases the probability of their environmental releases and calls for a systematic assessment of their potential impacts on soil invertebrates that serve as an important link along terrestrial food chains. Here, we investigated the response of earthworms (Eisenia fetida) to three types of multi-layer graphenes (MLGs) (G1, G2 and G3 with 12-15 layers) with variable morphology (lateral sizes: 7.4 ± 0.3, 6.4 ± 0.1 and 2.8 ± 0.1 µm; thicknesses: 5.0 ± 0.1, 4.2 ± 0.1 and 4.0 ± 0.2 nm, respectively) and hydrophobicity ((O + N)/C ratios: 0.029, 0.044 and 0.075; contact angles: 122.8, 118.8 and 115.1°, respectively). Exposure to these materials was conducted for 28 days (except for 48-h avoidance test) separately in potting or farm soil at 0.2% and 1% by weight. Earthworms avoided both soils when amended with 1% of the smaller and more hydrophilic MLGs (G2 and G3), leading to a decreased trend in worm cocoon formation. The smallest and most hydrophilic MLG (G3), which was easier to assimilate, also significantly inhibited the viability (20.2-56.0%) and mitochondrial membrane potential (32.0-48.5%) of worm coelomocytes in both soils. In contrast, oxidative damage (indicated by lipid peroxides) was more pronounced upon exposure to more hydrophobic and larger graphenic materials (G1 and G2), which were attributed to facilitated adhesion to and disruption of worm membranes. These findings highlight the importance of MLG morphology and hydrophobicity in their potential toxicity and mode of action, as well as ecological risks associated with incidental and accidental releases.


Assuntos
Grafite , Oligoquetos , Poluentes do Solo/análise , Animais , Interações Hidrofóbicas e Hidrofílicas , Solo
2.
Environ Sci Technol ; 53(4): 2045-2053, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30681845

RESUMO

Pyrolytic treatment offers the potential for the rapid remediation of contaminated soils. However, soil fertility restoration can be highly variable, underscoring the need to understand how treatment conditions affect soil detoxification and the ability to support plant growth. We report here the first pilot-scale study of pyrolytic remediation of crude-oil-contaminated soil using a continuously fed rotary kiln reactor. Treatment at 420 °C with only 15 min of residence time resulted in high removal efficiencies for both total petroleum hydrocarbons (TPH) (99.9%) and polycyclic aromatic hydrocarbons (PAHs) (94.5%) and restored fertility to clean soil levels (i.e., Lactuca sativa biomass dry weight yield after 21 days increased from 3.0 ± 0.3 mg for contaminated soil to 8.8 ± 1.1 mg for treated soil, which is similar to 9.0 ± 0.7 mg for uncontaminated soil). Viability assays with a human bronchial epithelial cell line showed that pyrolytic treatment effectively achieved detoxification of contaminated soil extracts. As expected, TPH and PAH removal efficiencies increased with increasing treatment intensity (i.e., higher temperatures and longer residence times). However, higher treatment intensities decreased soil fertility, suggesting that there is an optimal system-specific intensity for fertility restoration. Overall, this study highlights trade-offs between pyrolytic treatment intensity, hydrocarbon removal efficiency, and fertility restoration while informing the design, optimization, and operation of large-scale pyrolytic systems to efficiently remediate crude-oil-contaminated soils.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo
3.
Environ Sci Pollut Res Int ; 24(19): 16220-16227, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28540545

RESUMO

A novel laboratory-scale bioelectrode and anaerobic sludge coupled system was established for the enhancement of p-chloronitrobenzenes (p-ClNB) reductive transformation with addition of magnetite nanoparticles. In this coupled system, the bioelectrodes were supplied with a voltage of 0.8 V and the amount of magnetite nanoparticles was set at 7.4 mL/400 mL. Results showed that high p-ClNB transformation rate of 0.284 h-1 and high p-chloroaniline (p-ClAn) dechlorination rate of 0.082 h-1 were achieved in the coupled system at p-ClNB initial concentration of 30 mg L-1, and p-ClAn is one of the reductive products of p-ClNB. The cyclic voltammetry curve showed that when the potential was -1000 mV, the magnetite-biocathode current was about 10.7 times of the abiotic cathode. Also, a shift in the reductive peak potential and a dramatic increase in reductive peak current were observed. These findings suggest that magnetite nanoparticles could enhance the electrocatalytic activity and may act as electron conduits between microorganisms or between electrodes and microorganisms to promote the extracellular electron transfer.


Assuntos
Compostos de Anilina/química , Nanopartículas de Magnetita , Nitrobenzenos/química , Halogenação , Esgotos , Purificação da Água
4.
Environ Sci Technol ; 50(5): 2498-506, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26284736

RESUMO

Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically <1% by weight) within 3 h using only 40-60% of the energy required for incineration at 600-1200 °C. Formation of polycyclic aromatic hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.


Assuntos
Fertilizantes , Hidrocarbonetos/química , Poluentes do Solo/química , Solo/química , Arabidopsis/crescimento & desenvolvimento , Carbono , Hidrocarbonetos/análise , Incineração , Lactuca/crescimento & desenvolvimento , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/análise , Tecnologia/métodos , Termogravimetria
5.
Bioresour Technol ; 198: 358-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409105

RESUMO

Initial cell aggregation plays an important role in the formation of aerobic granules. In this study, three parallel aerobic granular sludge reactors treating low-strength wastewater were established using granular activated carbon (GAC) of different sizes as the nucleating agent. A novel visual quantitative evaluation method was used to discern how GAC size affects velocity field differences (GAC versus flocs) and aggregation behavior during sludge granulation. Results showed that sludge granulation was significantly enhanced by addition of 0.2mm GAC. However, there was no obvious improvement in granulation in reactor amended with 0.6mm GAC. Hydraulic analysis revealed that increase of GAC size enhanced the velocity field difference between flocs and GAC, which decreased the lifecycle and fraction of flocs-GAC aggregates. Overall, based on analysis of aggregation behavior, GAC of suitable sizes (0.2mm) can serve as the nucleating agent to accelerate flocs-GAC coaggregation and formation of aerobic granules.


Assuntos
Reatores Biológicos , Esgotos , Aerobiose , Carvão Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...