Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Vet Res ; 19(1): 155, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710273

RESUMO

BACKGROUND: Vector-borne zoonotic diseases are a concerning issue in Europe. Lyme disease and tick-borne encephalitis virus (TBEV) have been reported in several countries with a large impact on public health; other emerging pathogens, such as Rickettsiales, and mosquito-borne flaviviruses have been increasingly reported. All these pathogens are linked to wild ungulates playing roles as tick feeders, spreaders, and sentinels for pathogen circulation. This study evaluated the prevalence of TBEV, Borrelia burgdorferi sensu lato, Rickettsia spp., Ehrlichia spp., and Coxiella spp. by biomolecular screening of blood samples and ticks collected from wild ungulates. Ungulates were also screened by ELISA and virus neutralization tests for flaviviral antibody detection. RESULTS: A total of 274 blood samples were collected from several wild ungulate species, as well as 406 Ixodes ricinus, which were feeding on them. Blood samples tested positive for B. burgdorferi s.l. (1.1%; 0-2.3%) and Rickettsia spp. (1.1%; 0-2.3%) and showed an overall flaviviral seroprevalence of 30.6% (22.1-39.2%): 26.1% (17.9-34.3%) for TBEV, 3.6% (0.1-7.1%) for Usutu virus and 0.9% (0-2.7%) for West Nile virus. Ticks were pooled when possible and yielded 331 tick samples that tested positive for B. burgdorferi s.l. (8.8%; 5.8-11.8%), Rickettsia spp. (26.6%; 21.8-31.2%) and Neoehrlichia mikurensis (1.2%; 0-2.4%). TBEV and Coxiella spp. were not detected in either blood or tick samples. CONCLUSIONS: This research highlighted a high prevalence of several tick-borne zoonotic pathogens and high seroprevalence for flaviviruses in both hilly and alpine areas. For the first time, an alpine chamois tested positive for anti-TBEV antibodies. Ungulate species are of particular interest due to their sentinel role in flavivirus circulation and their indirect role in tick-borne diseases and maintenance as Ixodes feeders and spreaders.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Ixodes , Rickettsia , Animais , Estudos Soroepidemiológicos , Mosquitos Vetores , Europa (Continente) , Coxiella , Mamíferos
2.
Animals (Basel) ; 11(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530571

RESUMO

Anaplasma phagocytophilum (A. phagocytophilum) is a tick-borne pathogen causing disease in both humans and animals. Human granulocytic anaplasmosis (HGA) is an emerging disease, but despite the remarkable prevalence in European ticks and wild animals, human infection appears underdiagnosed. Several genetic variants are circulating in Europe, including the zoonotic ecotype I. This study investigated A. phagocytophilum occurrence in wild ungulates and their ectoparasites in an area where HGA has been reported. Blood samples from wild ungulates and ectoparasites were screened by biomolecular methods targeting the mps2 gene. The groEL gene was amplified and sequenced to perform genetic characterization and phylogenetic analysis. A total of 188 blood samples were collected from different wild ungulates species showing an overall prevalence of 63.8% (88.7% in wild ruminants and 3.6% in wild boars). The prevalence of A. phagocytophilum DNA in ticks (manly Ixodes ricinus), and keds collected from wild ruminants was high, reflecting the high infection rates obtained in their hosts. Among ticks collected from wild boars (Hyalomma marginatum and Dermacentor marginatus) no DNA was detected. Phylogenetic analysis demonstrated the presence of ecotype I and II. To date, this is the first Italian report of ecotype I in alpine chamois, mouflon, and wild boar species. These findings suggest their role in HGA epidemiology, and the high prevalence detected in this study highlights that this human tick-borne disease deserves further attention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...