Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Magn Reson ; 354: 107522, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506553

RESUMO

Nuclear Magnetic Resonance (NMR) is one of the primary techniques used in the oil industry for logging operations and in the laboratory environment to study rock formations due to its reliability in offering a reliable estimation of oil well productivity. Two types of well-logging operations exist, Wireline Logging and Logging While Drilling (LWD). Wireline Logging involves NMR measurements taken under static conditions. In contrast, LWD involves measurements taken during the drilling process while the tool is in motion, translating, rotating, and vibrating relative to the formation. To understand the behavior of NMR signals measured under LWD conditions on a laboratory scale, we developed a setup that includes a single-sided magnet, rf probes, and a mechanical system that emulates a relative sinusoidal motion between the sample and the applied magnetic field. Four representative rock samples were selected according to their relaxation times, which were short, intermediate, and long compared to the oscillation period of the LWD simulator: three sandstone, Fontainebleau, Berea Sandstone, and Portland Red, and one carbonate, Indiana Limestone. The results show that even with the modifications observed in the relaxation times distribution, which could lead to misinterpreting the geological formation parameters, the total porosity remains unaffected and independent of the sample motion during the NMR measurements, even under severe conditions and using the standard procedures of the data processing.

2.
Magn Reson Med ; 87(2): 674-685, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34498768

RESUMO

PURPOSE: Reduce expense and increase accessibility of MRI by eliminating pulsed field (B0 ) gradient hardware. METHODS: A radiofrequency imaging method is described that enables spatial encoding without B0 gradients. This method, herein referred to as frequency-modulated Rabi-encoded echoes (FREE), utilizes adiabatic full passage pulses and a gradient in the RF field (B1 ) to produce spatially dependent phase modulation, equivalent to conventional phase encoding. In this work, Cartesian phase encoding was accomplished using FREE in a multi-shot double spin-echo sequence. Theoretical analysis and computer simulations investigated the influence of resonance offset and B1 -gradient steepness and magnitude on reconstruction quality, which limit other radiofrequency imaging methodologies. Experimentally, FREE was compared to conventional phase-encoded MRI on human visual cortex using a simple surface transceiver coil. RESULTS: Image distortions occurred in FREE when using nonlinear B1 fields where the phase dependence becomes nonlinear, but with minimal change in signal intensity. Resonance offset effects were minimal for Larmor frequencies within the adiabatic full-passage pulse bandwidth. CONCLUSION: For the first time, FREE enabled slice-selective 2D imaging of the human brain without a B0 gradient in the y-direction. FREE achieved high resolution in regions where the B1 gradient was steepest, whereas images were distorted in regions where nonlinearity in the B1 gradient was significant. Given that FREE experiences no significant signal loss due to B1 nonlinearities and resonance offset, image distortions shown in this work might be corrected in the future based on B1 and B0 maps.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imagens de Fantasmas
3.
J Magn Reson ; 322: 106871, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33423758

RESUMO

This article was written in honor of Prof. Bernhard Blümich, who has heavily impacted many areas of Magnetic Resonance and, in particular, low-field and portable NMR with numerous advances, concepts, innovations, and applications of this impressive technology. Many years ago, we decided to research and develop single-sided magnets for the area of petroleum science and engineering to study oil reservoir rocks in the laboratory under well-logging conditions. The global urge to exploit oil reserves requires the analysis of reservoirs, intending to characterize the yields before starting the production. Thus, well-logging tools have been developed to estimate the quality of oil and reservoir productivity. NMR logging is included in these analytical tools, and numerous operations using this kind of device were performed since the early 1950s. To contribute to this vital research area, we show the development of a new benchtop single-sided NMR system, with well-logging tool characteristics, a cylindrical sweet spot with 4 cm of diameter and length, with magnetic field of 47 mT centered at 11 cm from the magnet's surface and a constant gradient of 35.7 G/cm along z. This system was used in self-diffusion, T1-T2, and D-T2 measurements of standard liquids and rock cores, demonstrating its functionality.

4.
PLoS One ; 13(7): e0201453, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048545

RESUMO

The primary objective of this study is to monitor tumor growth by using image techniques and behavioral testing through general and specific motor activities (spontaneous movements and gait). Our sample includes male Wistar rats, 2 months old and weighing 250-300 g, that is categorized into three groups: control, sham, and experimental. The experimental group was anesthetized; the C6 cells with luciferase expression that were suspended in a culture medium were implanted into the right frontoparietal cortex of the rats. The sham group received implant only with culture medium without cells. Images and behavioral tests were evaluated at base time and at 7, 14, 21, and 28 days after induced tumor growth analysis. The tumor volume measured by magnetic resonance imaging (MRI) and quantitative bioluminescence imaging (BLI) signal showed a correlation coefficient of r = 0.96. The MRI showed that the mean tumor volume increased by approximately 10, 26, and 49 times according to a comparison of tumor volume on the seventh day with 14, 21, and 28 days, respectively. The quantification of the BLI signal was (4.12 ± 2.01) x 10(8), (8.33 ± 3.12) x 10(8), (28.43 ± 6.32) x 10(8), and (63.02 ± 10.53) x 10(8) photons/s at the seventh, fourteenth, twenty-first, and twenty-eighth day, respectively. After 14 days of tumor induction, both behavioral tests showed significant differences between tumor and sham or control groups. Our study showed a high correlation between MRI and BLI for tumor growth monitoring with complement aspects analysis in tumor volume. In addition, functional behavioral analysis displayed sensitivity to monitor tumor growth, as well as to detect early significant changes between groups, primarily in the tumor group. The results of gait analysis were more sensitive than general motor analysis.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Glioma/diagnóstico por imagem , Glioma/fisiopatologia , Locomoção , Animais , Encéfalo/fisiopatologia , Linhagem Celular Tumoral , Marcha , Análise da Marcha , Medições Luminescentes/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos Wistar
5.
Einstein (Sao Paulo) ; 10(1): 11-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23045819

RESUMO

OBJECTIVE: The objective was to establish a pattern of tumor growth of the C6 model of glioblastoma multiform in Wistar rats via magnetic resonance imaging (MRI) for the subsequent verification of tumor volume reduction due to magnetic hyperthermia therapy. METHODS: Young male Wistar rats weighing between 250 and 300 g were used for the C6 model. After the rats were anesthetized (55 mg/ kg ketamine and 11 mg/kg xylazine), C6 lineage tumorigenic cells suspended in culture medium (10(5) cells in 10 microl) were stereotaxically injected into the right frontal cortex (bregma coordinates: 2.0 mm anteroposterior, 3.0 mm laterolateral, and 2.5 mm depth) of the rats using a Hamilton syringe. For the control group, the rats were injected with culture medium without cells. MRI scans were performed at 14, 21, and 28 d after the injection using a 2.0 T MRI scanner (Bruker BioSpec, Germany). The animals were anesthetized with 55 mg/kg ketamine and 11 mg/kg xylazine before being examined. Coronal multilayers were acquired using a standard spin echo sequence with the following parameters: repetition/echo time = 4.000 ms/67.1 ms, field of view = 3.50, matrix = 192, slice thickness = 0.4 mm, and slice separation = 0 mm. RESULTS: The MRI analysis enabled a clear visualization of the tumor mass, and it was possible to establish the tumor volume parameters on the various days that were examined. The volume at 14 d after induction was 13.7 +/- 2.5 mm3. On days 21 and 28, the tumor volumes were 31.7 +/- 6.5 mm3 and 122.1 +/- 11.8 mm3, respectively. CONCLUSION: These results demonstrated that it is possible to evaluate the C6 model tumor volume in rats, which will allow for the future implementation and verification of magnetic hyperthermia therapy.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Hipertermia Induzida/métodos , Magnetoterapia/métodos , Imageamento por Ressonância Magnética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral/transplante , Lobo Frontal/patologia , Glioblastoma/patologia , Masculino , Ratos , Ratos Wistar , Carga Tumoral
7.
Int J Nanomedicine ; 6: 591-603, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21674016

RESUMO

Gliomas are a group of heterogeneous primary central nervous system (CNS) tumors arising from the glial cells. Malignant gliomas account for a majority of malignant primary CNS tumors and are associated with high morbidity and mortality. Glioblastoma is the most frequent and malignant glioma, and despite the recent advances in diagnosis and new treatment options, its prognosis remains dismal. New opportunities for the development of effective therapies for malignant gliomas are urgently needed. Magnetic hyperthermia (MHT), which consists of heat generation in the region of the tumor through the application of magnetic nanoparticles subjected to an alternating magnetic field (AMF), has shown positive results in both preclinical and clinical assays. The aim of this review is to assess the relevance of hyperthermia induced by magnetic nanoparticles in the treatment of gliomas and to note the possible variations of the technique and its implication on the effectiveness of the treatment. We performed an electronic search in the literature from January 1990 to October 2010, in various databases, and after application of the inclusion criteria we obtained a total of 15 articles. In vitro studies and studies using animal models showed that MHT was effective in the promotion of tumor cell death and reduction of tumor mass or increase in survival. Two clinical studies showed that MHT could be applied safely and with few side effects. Some studies suggested that mechanisms of cell death, such as apoptosis, necrosis, and antitumor immune response were triggered by MHT. Based on these data, we could conclude that MHT proved to be efficient in most of the experiments, and that the improvement of the nanocomposites as well as the AMF equipment might contribute toward establishing MHT as a promising tool in the treatment of malignant gliomas.


Assuntos
Glioma/terapia , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...