Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 54(1): 56, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922745

RESUMO

BACKGROUND: On-going climate change will drastically modify agriculture in the future, with a need for more sustainable systems, in particular regarding animal production. In this context, genetic diversity is a key factor for adaptation to new conditions: local breeds likely harbor unique adaptive features and represent a key component of diversity to reach resilience. However, local breeds often suffer from small population sizes, which puts these valuable resources at risk of extinction. In chickens, population management programs were initiated a few decades ago in France, relying on a particular niche market that aims at promoting and protecting local breeds. We conducted a unique comprehensive study of 22 French local breeds, along with four commercial lines, to evaluate their genetic conservation status and the efficiency of the population management programs. RESULTS: Using a 57K single nucleotide polymorphism (SNP) chip, we demonstrated that both the between- and within-breed genetic diversity levels are high in the French local chicken populations. Diversity is mainly structured according to the breeds' selection and history. Nevertheless, we observed a prominent sub-structuring of breeds according to farmers' practices in terms of exchange, leading to more or less isolated flocks. By analysing demographic parameters and molecular information, we showed that consistent management programs are efficient in conserving genetic diversity, since breeds that integrated such programs earlier had older inbreeding. CONCLUSIONS: Management programs of French local chicken breeds have maintained their genetic diversity at a good level. We recommend that future programs sample as many individuals as possible, with emphasis on both males and females from the start, and focus on a quick and strong increase of population size while conserving as many families as possible. We also stress the usefulness of molecular tools to monitor small populations for which pedigrees are not always available. Finally, the breed appears to be an appropriate operational unit for the conservation of genetic diversity, even for local breeds, for which varieties, if present, could also be taken into account.


Assuntos
Galinhas , Endogamia , Animais , Galinhas/genética , Feminino , Variação Genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Densidade Demográfica
2.
Mol Phylogenet Evol ; 158: 107044, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33346111

RESUMO

The genus Gallus is distributed across a large part of Southeast Asia and has received special interest because the domestic chicken, Gallus gallus domesticus, has spread all over the world and is a major protein source for humans. There are four species: the red junglefowl (G. gallus), the green junglefowl (G. varius), the Lafayette's junglefowl (G. lafayettii) and the grey junglefowl (G. sonneratii). The aim of this study is to reconstruct the history of these species by a whole genome sequencing approach and resolve inconsistencies between well supported topologies inferred using different data and methods. Using deep sequencing, we identified over 35 million SNPs and reconstructed the phylogeny of the Gallus genus using both distance (BioNJ) and maximum likelihood (ML) methods. We observed discrepancies according to reconstruction methods and genomic components. The two most supported topologies were previously reported and were discriminated by using phylogenetic and gene flow analyses, based on ABBA statistics. Terminology fix requested by the deputy editor led to support a scenario with G. gallus as the earliest branching lineage of the Gallus genus, instead of G. varius. We discuss the probable causes for the discrepancy. A likely one is that G. sonneratii samples from parks or private collections are all recent hybrids, with roughly 10% of their autosomal genome originating from G. gallus. The removal of those regions is needed to provide reliable data, which was not done in previous studies. We took care of this and additionally included two wild G. sonneratii samples from India, showing no trace of introgression. This reinforces the importance of carefully selecting and validating samples and genomic components in phylogenomics.


Assuntos
Galinhas/genética , Genoma , Animais , Evolução Biológica , Galinhas/classificação , DNA/química , DNA/metabolismo , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Fluxo Gênico , Haplótipos , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Sequenciamento Completo do Genoma
3.
Pigment Cell Melanoma Res ; 32(3): 381-390, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30457703

RESUMO

The chocolate plumage color in chickens is due to a sex-linked recessive mutation, choc, which dilutes eumelanin pigmentation. Because TYRP1 is sex-linked in chickens, and TYRP1 mutations determine brown coat color in mammals, TYRP1 appeared as the obvious candidate gene for the choc mutation. By combining gene mapping with gene capture, a complete association was identified between the chocolate phenotype and a missense mutation leading to a His214Asn change in the ZnA zinc-binding domain of the protein. A diagnostic test confirmed complete association by screening 428 non-chocolate chickens of various origins. This is the first TYRP1 mutation described in the chicken. Electron microscopy analysis showed that melanosomes were more numerous in feather follicles of chocolate chickens but exhibited an abnormal structure characterized by a granular content and an irregular shape. A similar altered morphology was observed on melanosomes of another TYRP1 mutant in birds, the roux mutation of the quail.


Assuntos
Cor de Cabelo/genética , Melanossomas/patologia , Mutação de Sentido Incorreto , Oxirredutases/genética , Transtornos da Pigmentação/patologia , Pigmentação/genética , Animais , Sequência de Bases , Galinhas , Feminino , Masculino , Melanossomas/genética , Fenótipo , Transtornos da Pigmentação/genética , Homologia de Sequência
4.
PLoS One ; 10(3): e0118706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25768125

RESUMO

Copy Number Variation has been associated with morphological traits, developmental defects or disease susceptibility. The autosomal dominant Pea-comb mutation in chickens is due to the massive amplification of a CNV in intron 1 of SOX5 and provides a unique opportunity to assess the effect of variation in the number of repeats on quantitative traits such as comb size and comb mass in Pea-comb chickens. The quantitative variation of comb size was estimated by 2D morphometry and the number of repeats (RQ) was estimated by qPCR, in a total of 178 chickens from 3 experimental lines, two of them showing segregation for the Pea-comb mutation. This study included only Pea-comb chickens. Analysis of variance showed highly significant effects of line and sex on comb measurements. Adult body weight (BW) and RQ were handled as covariates. BW significantly influenced comb mass but not comb size. RQ values significantly influenced comb size, and the linear regression coefficient was highest for heterozygous carriers: the higher the number of repeats, the smaller the comb size. A similar trend was observed for comb mass. The CNV contributed to 3.4% of the phenotypic variance of comb size in heterozygous carriers of the CNV, an order of magnitude frequently encountered for QTLs. Surprisingly, there was no such relationship between RQ values and comb size in the homozygous line. It may be concluded that heterozygosity for a CNV in a non-coding region may contribute to phenotypic plasticity.


Assuntos
Galinhas/genética , Variações do Número de Cópias de DNA , Análise de Variância , Animais , Galinhas/anatomia & histologia , Feminino , Masculino , Mutação , Fenótipo , Sequências Repetitivas de Ácido Nucleico/genética , Fatores de Transcrição SOXD/genética
5.
PLoS One ; 7(12): e50890, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227218

RESUMO

The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH) receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb), is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.


Assuntos
Galinhas/genética , Crista e Barbelas/embriologia , Crista e Barbelas/metabolismo , Proteínas Hedgehog/metabolismo , Mutação/genética , Transdução de Sinais , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/crescimento & desenvolvimento , Embrião de Galinha , Crista e Barbelas/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ectoderma/efeitos dos fármacos , Ectoderma/embriologia , Ectoderma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Estudos de Associação Genética , Humanos , Masculino , Fenótipo , Fatores de Transcrição SOXD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Coloração e Rotulagem , Alcaloides de Veratrum/farmacologia
6.
PLoS Genet ; 8(6): e1002775, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22761584

RESUMO

Rose-comb, a classical monogenic trait of chickens, is characterized by a drastically altered comb morphology compared to the single-combed wild-type. Here we show that Rose-comb is caused by a 7.4 Mb inversion on chromosome 7 and that a second Rose-comb allele arose by unequal crossing over between a Rose-comb and wild-type chromosome. The comb phenotype is caused by the relocalization of the MNR2 homeodomain protein gene leading to transient ectopic expression of MNR2 during comb development. We also provide a molecular explanation for the first example of epistatic interaction reported by Bateson and Punnett 104 years ago, namely that walnut-comb is caused by the combined effects of the Rose-comb and Pea-comb alleles. Transient ectopic expression of MNR2 and SOX5 (causing the Pea-comb phenotype) occurs in the same population of mesenchymal cells and with at least partially overlapping expression in individual cells in the comb primordium. Rose-comb has pleiotropic effects, as homozygosity in males has been associated with poor sperm motility. We postulate that this is caused by the disruption of the CCDC108 gene located at one of the inversion breakpoints. CCDC108 is a poorly characterized protein, but it contains a MSP (major sperm protein) domain and is expressed in testis. The study illustrates several characteristic features of the genetic diversity present in domestic animals, including the evolution of alleles by two or more consecutive mutations and the fact that structural changes have contributed to fast phenotypic evolution.


Assuntos
Galinhas/genética , Inversão Cromossômica/genética , Crista e Barbelas , Proteínas de Homeodomínio/genética , Mutação , Animais , Evolução Biológica , Crista e Barbelas/anatomia & histologia , Crista e Barbelas/crescimento & desenvolvimento , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Masculino , Mesoderma/citologia , Fenótipo , Estrutura Terciária de Proteína , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Motilidade dos Espermatozoides/genética , Motilidade dos Espermatozoides/fisiologia , Testículo/metabolismo
7.
PLoS One ; 6(10): e26932, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046416

RESUMO

Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans.


Assuntos
Processamento Alternativo/genética , Epilepsia/genética , Dosagem de Genes , Proteínas do Tecido Nervoso/genética , Animais , Galinhas , Modelos Animais de Doenças , Epilepsia/etiologia , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Filogenia , Convulsões/genética
8.
PLoS Genet ; 5(6): e1000512, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19521496

RESUMO

Pea-comb is a dominant mutation in chickens that drastically reduces the size of the comb and wattles. It is an adaptive trait in cold climates as it reduces heat loss and makes the chicken less susceptible to frost lesions. Here we report that Pea-comb is caused by a massive amplification of a duplicated sequence located near evolutionary conserved non-coding sequences in intron 1 of the gene encoding the SOX5 transcription factor. This must be the causative mutation since all other polymorphisms associated with the Pea-comb allele were excluded by genetic analysis. SOX5 controls cell fate and differentiation and is essential for skeletal development, chondrocyte differentiation, and extracellular matrix production. Immunostaining in early embryos demonstrated that Pea-comb is associated with ectopic expression of SOX5 in mesenchymal cells located just beneath the surface ectoderm where the comb and wattles will subsequently develop. The results imply that the duplication expansion interferes with the regulation of SOX5 expression during the differentiation of cells crucial for the development of comb and wattles. The study provides novel insight into the nature of mutations that contribute to phenotypic evolution and is the first description of a spontaneous and fully viable mutation in this developmentally important gene.


Assuntos
Galinhas/genética , Crista e Barbelas/crescimento & desenvolvimento , Dosagem de Genes , Íntrons , Mutação , Fatores de Transcrição SOXD/genética , Animais , Diferenciação Celular , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Mapeamento Cromossômico , Crista e Barbelas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Masculino , Dados de Sequência Molecular , Fenótipo , Fatores de Transcrição SOXD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...