Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Neuropharmacol ; 20(7): 1297-1328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34825873

RESUMO

Nowadays, neurodegenerative diseases (NDs), such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a great challenge in different scientific fields, such as neuropharmacology, medicinal chemistry, molecular biology and medicine, as all these pathologies remain incurable, with high socioeconomic impacts and high costs for governmental health services. Due to their severity and multifactorial pathophysiological complexity, the available approved drugs for clinic have not yet shown adequate effectiveness and exhibited very restricted options in the therapeutic arsenal; this highlights the need for continued drug discovery efforts in the academia and industry. In this context, natural products, such as curcumin (1), resveratrol (2) and cannabidiol (CBD, 3) have been recognized as important sources, with promising chemical entities, prototype models and starting materials for medicinal organic chemistry, as their molecular architecture, multifunctional properties and single chemical diversity could facilitate the discovery, optimization and development of innovative drug candidates with improved pharmacodynamics and pharmacokinetics compared to the known drugs and, perhaps, provide a chance for discovering novel effective drugs to combat NDs. In this review, we report the most recent efforts of medicinal chemists worldwide devoted to the exploration of curcumin (1), resveratrol (2) and cannabidiol (CBD, 3) as starting materials or privileged scaffolds in the design of multi-target directed ligands (MTDLs) with potential therapeutic properties against NDs, which have been published in the scientific literature during the last 10 years of research and are available in PubMed, SCOPUS and Web of Science databases.


Assuntos
Canabidiol , Curcumina , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Desenho de Fármacos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico
2.
Curr Neuropharmacol ; 18(5): 348-407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31631821

RESUMO

Neurodegenerative Diseases (NDs) are progressive multifactorial neurological pathologies related to neuronal impairment and functional loss from different brain regions. Currently, no effective treatments are available for any NDs, and this lack of efficacy has been attributed to the multitude of interconnected factors involved in their pathophysiology. In the last two decades, a new approach for the rational design of new drug candidates, also called multitarget-directed ligands (MTDLs) strategy, has emerged and has been used in the design and for the development of a variety of hybrid compounds capable to act simultaneously in diverse biological targets. Based on the polypharmacology concept, this new paradigm has been thought as a more secure and effective way for modulating concomitantly two or more biochemical pathways responsible for the onset and progress of NDs, trying to overcome low therapeutical effectiveness. As a complement to our previous review article (Curr. Med. Chem. 2007, 14 (17), 1829-1852. https://doi.org/10.2174/092986707781058805), herein we aimed to cover the period from 2008 to 2019 and highlight the most recent advances of the exploitation of Molecular Hybridization (MH) as a tool in the rational design of innovative multifunctional drug candidate prototypes for the treatment of NDs, specially focused on AD, PD, HD and ALS.


Assuntos
Desenho de Fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...