Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(1): 1-14, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173592

RESUMO

In this study, we discuss the removal of fluoride from water through column adsorption methods using Al(OH)3@AC as a functional granular activated carbon. The height of the bed, fluoride concentration, and flow rate are the experimental factors used to obtain the breakthrough curves. As the flow rate increased, the breakthrough and saturation times decreased. The analysis of simplified column models, such as the Adams-Bohart, Thomas, and Yoon-Nelson models, revealed that the Clark model best described the adsorption process when fitting the experimental data. The obtained breakthrough curves agreed with the corresponding experimental data. The highest capacity for adsorption obtained during the column procedure was found to be 41.84 mg g-1 with a bed height of 3 cm, an initial fluoride concentration of 10 mg L-1 and a flow rate of 7.5 mL min-1.

2.
RSC Adv ; 10(34): 20009-20019, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520429

RESUMO

The present work addresses the development of simple, low-cost and eco-friendly cocoa-shell-based materials for efficient removal of heavy metal hexavalent chromium (Cr(vi)), and toxic nitrate (NO3 -) from aqueous solution. A conventional treatment process was used to purify cocoa shell (CS) into an adsorbent, followed by chemical grafting of dendrimers to promote its surface properties for nitrate and Cr(vi) removal. The morphology, surface charge, structure and stability of the new adsorbent were investigated by scanning electron microscopy, Fourier transform infrared and UV-visible spectroscopies, zeta potential, X-ray photoelectron spectrometry, and differential scanning calorimetry. The successful chemical grafting of the dendrimer (polyethyleneimine, PEI) onto purified CS was confirmed. CS-T-PEI-P proved to be a very efficient candidate for the removal of nitrate and chromium(vi). Removal of the two pollutants at different initial concentrations and pH values was studied and discussed. Sorption of chromium and nitrate was found to obey 2nd-order kinetics and a Freundlich-type isotherm, affording an uptake adsorption of 16.92 mg g-1 for NO3 - and 24.78 mg g-1 for Cr(vi). These results open promising prospects for its potential applications as a low cost catalyst in wastewater treatment.

3.
Heliyon ; 5(12): e02926, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890940

RESUMO

Vertisols occupy approximately 1,200,000 ha in Northern Cameroon. Their richness in smectites allows for the production of "bleaching earths" necessary for refining palm oil, and their effluent is used for leachate treatment. In the present work, two mineral acids (HCl and H2SO4) were compared, and the most efficient acid with the lowest cost was determined for use in industrial applications. Under similar experimental conditions (ratio of acid solution/clay mass = 5/1, temperature = 97 °C, stirring time = 4 h), the quantity of cations (Fe2+, Fe3+, Al3+) solubilised during acid activation, palm oil discolouration rate by each activated sample and the financial cost of 5 L of acid solution that is required for the acid activation of one kilogram of smectite clay were compared. It was found that 2N H2SO4 was more efficient than 1N HCl and 1N H2SO4, considering palm oil bleaching efficiency and cost. The filtrate collected after the acid activation of vertisols was rich in H+ (2.04.10-1M), Fe2+ (2.8.10-3M), Fe3+ (4.2.10-2M) and Al3+ (9.2.10-2M) ions. One gram of smectite clay material produced 9 mL of this filtrate that was used for the treatment of leachate from a controlled landfill. The leachate colour decreased from 4262 to 285 PtCo units, while the corresponding chemical oxygen demand (COD) decreased from 802 to 128 mg/L. Thus, the most effective acid for industrial bleaching earth production from vertisol is 2N H2SO4 acid.

4.
Dalton Trans ; 47(27): 9143-9155, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946586

RESUMO

A facile and eco-friendly method was developed to prepare a microporous CuO@Ag0 core-shell with high catalytic and antibacterial activities. Scanning and transmission electron microscopy revealed a preponderance of nearly spherical 50 nm particles with slight structure compaction. Comparison of the hysteresis loops confirmed the structure compaction after AgNP incorporation, and a significant decrease of the specific surface area from 55.31 m2 g-1 for CuO to 8.03 m2 g-1 for CuO@Ag0 was noticed. A kinetic study of 4-nitrophenol (4-NP) reduction into 4-aminophenol (4-AP) with sodium borohydride revealed a first order reaction that produces total conversion in less than 18 minutes. CuO@Ag0 also exhibited appreciable antibacterial activity against Staphylococcus aureus. The antibacterial effects were found to strongly depend on the size, contact surface, morphology and chemical composition of the catalyst particles. The addition of Ag0-NPs produced more reactive oxygen species in the bacteria medium. These results open promising prospects for its potential applications as a low cost catalyst in wastewater treatment and antibacterial agent in cosmetics.

5.
J Colloid Interface Sci ; 491: 89-97, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012917

RESUMO

In this paper, a new synthetic strategy towards functionalized ZnO-HMD@ZnO-Fe/Cu core-shell using sol-gel process modified by chemical grafting of hexamethylenediamine (HMD) on the core and in-situ dispersion of Cu0/Fe0 as metallic nanoparticles (M-NPs) on the shell. The as-prepared core-shell materials were fully characterized by transmission electron microscopy, X-ray powder diffractometry, diffuse reflectance and FT-IR spectrophotometery, photoluminescence, and complexes impedance spectroscopy measurements. The XRD patterns agreed with that of the ZnO typical wurtzite structure, indicating good crystallinity of ZnO-HMD@ZnO-Fe/Cu, with the presence of Fe0 and Cu0 phases. Hexamethylenediamine grafting and M-NPs insertion were highly activated and enhanced the core and shell interface by the physiochemical interaction. After functionalization, luminescence intensities and electrical properties of both core and core-shell nanoparticles are improved, indicating the effects of the surface groups on the charge transfer of ZnO-HMD@ZnO-Fe/Cu. The hydrogen capacity retention was depended strongly on the composition and structure of the obtained core-shell. Iron/Copper-loaded ZnO-HMD@ZnO materials exhibited the highest capacity for hydrogen storage. The excellent stability and performance of the ZnO-HMD@ZnO-Fe/Cu core-shell make it an efficient candidate for hydrogen storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...