Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 448: 139146, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569414

RESUMO

This study aimed to develop three formulations of cereal flours: control cereal flour (CCF), probiotic cereal flour (PCF), and symbiotic cereal flour (SCF), and porridges from the flours were manufactured as a functional food. No significant differences were observed in the microbiological quality and the color of the flours for 150 days. The technological and functional potential of the flours were variously improved with the addition of Bacillus coagulans as a probiotic and beta-glucan as a prebiotic. The addition of beta-glucan fiber did not change the viability of the probiotic, which was higher than 7.45 log CFU/g for SCF and 7.13 log CFU/g for PCF until the end of the storage period. All porridge samples showed non-Newtonian fluid behavior with pseudoplastic characteristics; and the PCF and SCF porridges differed regarding the parameters of hardness (1.10 to 1.38 N), adhesiveness (5.88 to 8.86 mJ), cohesiveness (0.78 to 0.95) and gumminess (0.93 to 1.52 N) over time. The addition of the beta-glucan prebiotic interfered with these attributes due to its gelling capacity in the presence of water. The PCF obtained the best sensory acceptance scores when compared to the other formulations. The addition of Bacillus coagulans and beta-glucan did not interfere with thermographic behavior. The SCF differed in the observed crystallinity parameters from CCF and PCF, with the presence of larger solids and agglomerates.

2.
Food Chem ; 373(Pt A): 131404, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34715632

RESUMO

This research evaluated the antioxidant, antimicrobial and toxicity potential of the leaf extract of Croton blanchetianus Baill (ExCb) and its effect on the conservation of lamb ribs. The ExCb (control treatment) revealed higher concentration of 2,5-dihydroxybenzoic acid (190.10 mg/g), catechin (84.10 mg/g), rosmarinic acid (56.01 mg/g), 4-hydroxybenzoic acid (52.05 mg/g) and myricetin (40.00 mg/g). And it showed high phenolic content (204.05 mg GAE/g), antioxidant potential (11.78 µg/mL by DPPH and 140.40 mmol Sulf Fer/g by FRAP) and antimicrobial activity with inhibition for Staphylococcus aureus, Listeria innocua, Salmonella enterica, Escherichia coli and Aspergillus flavus. However, it showed toxicity against brine shrimp (Artemia Salina) (LD50 of 66.26 µg/mL). The 2,5-dihydroxybenzoic acid was indicated as the main compound responsible for the toxicity of ExCb. After treatment in an oven at 110 °C for 15 min, the toxicity of ExCb was reduced by over 7 times, the compound 2,5-dihydroxybenzoic acid was not identified, and still maintained the phenolic compounds content of 94.35% and antioxidant activity compared to the control (without thermal treatment). The application of absorbent containing 50 mg/mL of ExCb added to the packaging maintained the quality and prevented the lipid oxidation of lamb ribs during 10 days of refrigerated storage.


Assuntos
Croton , Animais , Antioxidantes/farmacologia , Fenóis , Extratos Vegetais/farmacologia , Costelas , Ovinos
3.
PLoS One ; 15(10): e0240889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33125402

RESUMO

The quinoa oil presents benefits to health, but its low water dispersibility in the aqueous matrix and instability of bioactive compounds is challenging for food application. This study performed the physicochemical and chemical characterization of quinoa oil and evaluated its water dispersibility and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity after nanoencapsulation in porcine gelatin and combination with whey protein isolate by emulsification O/W technique. Thus, three formulations were obtained: 1) OG-containing quinoa oil and porcine gelatin in aqueous phase 2; 2) OWG1-containing quinoa oil, whey protein isolate, and porcine gelatin in aqueous phase 2; and 3) OWG2-containing quinoa oil and whey protein isolate in aqueous phase 1, and porcine gelatin in aqueous phase 2. The oil characterization showed that quinoa oil presented the predominance of linoleic acid (53.4%), and concentration of alpha and gamma-tocopherol, respectively, of 8.56 and 6.28 mg.100g-1. All formulations presented a smooth surface without depression or cracking, an average diameter between 165.77 and 529.70 nm. Fourier transform infrared spectroscopy indicated chemical interaction between the encapsulating agents and the oil in all formulations, being more intensified in OWG1 and OWG2. Based on this, these formulations showed higher dispersibility in aqueous solution [68% (3.48) and 71% (2.97)]. This resulted in higher antioxidant activity for OWG1 and OWG2, showing the amounts that reduces antioxidant activity by 50% equal to 5.30 (0.19) mg/mL and 5.54 (0.27) mg/mL, respectively, compared to quinoa oil [13.36 (0.28) mg/mL] (p < 0.05). Thus, quinoa oil nanoencapsulation proved to be an efficient alternative to enable water-dispersibility and enhance antioxidant activity, increasing its potential for application in the food industry.


Assuntos
Antioxidantes/química , Chenopodium quinoa/química , Gelatina/química , Óleos de Plantas/química , Proteínas do Soro do Leite/química , Animais , Antioxidantes/análise , Estabilidade de Medicamentos , Indústria Alimentícia , Ácido Linoleico/isolamento & purificação , Nanopartículas , Óleos de Plantas/análise , Suínos , Água , alfa-Tocoferol/isolamento & purificação , gama-Tocoferol/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...