Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 200, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802733

RESUMO

BACKGROUND: The initial version of SEDA assists life science researchers without programming skills with the preparation of DNA and protein sequence FASTA files for multiple bioinformatics applications. However, the initial version of SEDA lacks a command-line interface for more advanced users and does not allow the creation of automated analysis pipelines. RESULTS: The present paper discusses the updates of the new SEDA release, including the addition of a complete command-line interface, new functionalities like gene annotation, a framework for automated pipelines, and improved integration in Linux environments. CONCLUSION: SEDA is an open-source Java application and can be installed using the different distributions available ( https://www.sing-group.org/seda/download.html ) as well as through a Docker image ( https://hub.docker.com/r/pegi3s/seda ). It is released under a GPL-3.0 license, and its source code is publicly accessible on GitHub ( https://github.com/sing-group/seda ). The software version at the time of submission is archived at Zenodo (version v1.6.0, http://doi.org/10.5281/zenodo.10201605 ).


Assuntos
Biologia Computacional , Software , Biologia Computacional/métodos , Análise de Dados
2.
J Integr Bioinform ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38529929

RESUMO

The vast amount of genome sequence data that is available, and that is predicted to drastically increase in the near future, can only be efficiently dealt with by building automated pipelines. Indeed, the Earth Biogenome Project will produce high-quality reference genome sequences for all 1.8 million named living eukaryote species, providing unprecedented insight into the evolution of genes and gene families, and thus on biological issues. Here, new modules for gene annotation, further BLAST search algorithms, further multiple sequence alignment methods, the adding of reference sequences, further tree rooting methods, the estimation of rates of synonymous and nonsynonymous substitutions, and the identification of positively selected amino acid sites, have been added to auto-phylo (version 2), a recently developed software to address biological problems using phylogenetic inferences. Additionally, we present auto-phylo-pipeliner, a graphical user interface application that further facilitates the creation and running of auto-phylo pipelines. Inferences on S-RNase specificity, are critical for both cross-based breeding and for the establishment of pollination requirements. Therefore, as a test case, we develop an auto-phylo pipeline to identify amino acid sites under positive selection, that are, in principle, those determining S-RNase specificity, starting from both non-annotated Prunus genomes and sequences available in public databases.

3.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397104

RESUMO

SARS-CoV-2 amino acid variants that contribute to an increased transmissibility or to host immune system escape are likely to increase in frequency due to positive selection and may be identified using different methods, such as codeML, FEL, FUBAR, and MEME. Nevertheless, when using different methods, the results do not always agree. The sampling scheme used in different studies may partially explain the differences that are found, but there is also the possibility that some of the identified positively selected amino acid sites are false positives. This is especially important in the context of very large-scale projects where hundreds of analyses have been performed for the same protein-coding gene. To account for these issues, in this work, we have identified positively selected amino acid sites in SARS-CoV-2 and 15 other coronavirus species, using both codeML and FUBAR, and compared the location of such sites in the different species. Moreover, we also compared our results to those that are available in the COV2Var database and the frequency of the 10 most frequent variants and predicted protein location to identify those sites that are supported by multiple lines of evidence. Amino acid changes observed at these sites should always be of concern. The information reported for SARS-CoV-2 can also be used to identify variants of concern in other coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Aminoácidos/genética
4.
Front Mol Neurosci ; 16: 1140719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008788

RESUMO

Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/ MJD), is the most frequent polyglutamine (polyQ) neurodegenerative disorder. It is caused by a pathogenic expansion of the polyQ tract, located at the C-terminal region of the protein encoded by the ATXN3 gene. This gene codes for a deubiquitinating enzyme (DUB) that belongs to a gene family, that in humans is composed by three more genes (ATXN3L, JOSD1, and JOSD2), that define two gene lineages (the ATXN3 and the Josephins). These proteins have in common the N-terminal catalytic domain (Josephin domain, JD), that in Josephins is the only domain present. In ATXN3 knock-out mouse and nematode models, the SCA3 neurodegeneration phenotype is not, however, reproduced, suggesting that in the genome of these species there are other genes that are able to compensate for the lack of ATXN3. Moreover, in mutant Drosophila melanogaster, where the only JD protein is coded by a Josephin-like gene, expression of the expanded human ATXN3 gene reproduces multiple aspects of the SCA3 phenotype, in contrast with the results of the expression of the wild type human form. In order to explain these findings, phylogenetic, as well as, protein-protein docking inferences are here performed. Here we show multiple losses of JD containing genes across the animal kingdom, suggesting partial functional redundancy of these genes. Accordingly, we predict that the JD is essential for binding with ataxin-3 and proteins of the Josephin lineages, and that D. melanogaster mutants are a good model of SCA3 despite the absence of a gene from the ATXN3 lineage. The molecular recognition regions of the ataxin-3 binding and those predicted for the Josephins are, however, different. We also report different binding regions between the two ataxin-3 forms (wild-type (wt) and expanded (exp)). The interactors that show an increase in the interaction strength with exp ataxin-3, are enriched in extrinsic components of mitochondrial outer membrane and endoplasmatic reticulum membrane. On the other hand, the group of interactors that show a decrease in the interaction strength with exp ataxin-3 is significantly enriched in extrinsic component of cytoplasm.

5.
J Integr Bioinform ; 20(2)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848492

RESUMO

EvoPPI (http://evoppi.i3s.up.pt), a meta-database for protein-protein interactions (PPI), has been upgraded (EvoPPI3) to accept new types of data, namely, PPI from patients, cell lines, and animal models, as well as data from gene modifier experiments, for nine neurodegenerative polyglutamine (polyQ) diseases caused by an abnormal expansion of the polyQ tract. The integration of the different types of data allows users to easily compare them, as here shown for Ataxin-1, the polyQ protein involved in spinocerebellar ataxia type 1 (SCA1) disease. Using all available datasets and the data here obtained for Drosophila melanogaster wt and exp Ataxin-1 mutants (also available at EvoPPI3), we show that, in humans, the Ataxin-1 network is much larger than previously thought (380 interactors), with at least 909 interactors. The functional profiling of the newly identified interactors is similar to the ones already reported in the main PPI databases. 16 out of 909 interactors are putative novel SCA1 therapeutic targets, and all but one are already being studied in the context of this disease. The 16 proteins are mainly involved in binding and catalytic activity (mainly kinase activity), functional features already thought to be important in the SCA1 disease.


Assuntos
Drosophila melanogaster , Ataxias Espinocerebelares , Animais , Humanos , Ataxina-1/genética , Ataxina-1/metabolismo , Drosophila melanogaster/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo
6.
Genes (Basel) ; 13(10)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36292802

RESUMO

Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.


Assuntos
Ácido Ascórbico , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ácido Ascórbico/metabolismo , Vitaminas , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Oxirredutases/genética , Inositol
7.
Viruses ; 14(7)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35891545

RESUMO

Viruses from the Coronaviridae family have been reported to infect a large range of hosts, including humans. The latest human-infecting coronavirus, SARS-CoV-2, turned into a pandemic and subtypes with different transmissibility have appeared since then. The SARS-CoV-2 Spike (S) protein interacts with the angiotensin-converting enzyme 2 (ACE2) host receptor, and thus, in silico models, based on the structural features of the SARS-CoV-2 S protein-ACE2 receptor complex, as well as ACE2 amino acid patterns, may be used to predict the within- and between-species transmissibility of SARS-CoV-2 subtypes. Here, it is shown that at the beginning of the pandemic, the SARS-CoV-2 S protein was, as expected for a virus that just jumped the species barrier, ill-adapted to the human ACE2 receptor, and that the replacement of one SARS-CoV-2 variant by another is partially due to a better fitting of the S protein-human ACE2 complex. Moreover, it is shown that mutations that are predicted to lead to a better fit have increased in the population due to positive selection. It is also shown that the number of ACE2-interfacing residues is positively correlated with the transmissibility rate of SARS-CoV-2 variants. Finally, it is shown that the number of species that are susceptible to infection by SARS-CoV-2, and that could be a reservoir for this virus, is likely higher than previously thought.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/transmissão , Humanos , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
BMC Ecol Evol ; 22(1): 84, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752765

RESUMO

BACKGROUND: Vitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by L-gulonolactone oxidase (GULO). The GULO gene has been implicated in VC synthesis only, while Regucalcin has been shown to have multiple functions in mammals. RESULTS: Both GULO and Regucalcin can be found in non-bilaterian, protostome and deuterostome species. Regucalcin, as here shown, is involved in multiple functions such as VC synthesis, calcium homeostasis, and the oxidative stress response in both Deuterostomes and Protostomes, and in insects in receptor-mediated uptake of hexamerin storage proteins from haemolymph. In Insecta and Nematoda, however, there is no GULO gene, and in the latter no Regucalcin gene, but species from these lineages are still able to synthesize VC, implying at least one novel synthesis pathway. In vertebrates, SVCT1, a gene that belongs to a family with up to five members, as here shown, is the only gene involved in the uptake of VC in the gut. This specificity is likely the result of a subfunctionalization event that happened at the base of the Craniata subphylum. SVCT-like genes present in non-Vertebrate animals are likely involved in both VC and nucleobase transport. It is also shown that in lineages where GULO has been lost, SVCT1 is now an essential gene, while in lineages where SVCT1 gene has been lost, GULO is now an essential gene. CONCLUSIONS: The simultaneous study, for the first time, of GULO, Regucalcin and SVCTs evolution provides a clear picture of VC synthesis/acquisition and reveals very different selective pressures in different animal taxonomic groups.


Assuntos
Antioxidantes , Ácido Ascórbico , Animais , Antioxidantes/metabolismo , L-Gulonolactona Oxidase/genética , Mamíferos/metabolismo , Estresse Oxidativo , Vertebrados/genética
9.
Dev Cell ; 57(4): 440-450.e7, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34986324

RESUMO

Regeneration of adult mammalian central nervous system (CNS) axons is abortive, resulting in inability to recover function after CNS lesion, including spinal cord injury (SCI). Here, we show that the spiny mouse (Acomys) is an exception to other mammals, being capable of spontaneous and fast restoration of function after severe SCI, re-establishing hind limb coordination. Remarkably, Acomys assembles a scarless pro-regenerative tissue at the injury site, providing a unique structural continuity of the initial spinal cord geometry. The Acomys SCI site shows robust axon regeneration of multiple tracts, synapse formation, and electrophysiological signal propagation. Transcriptomic analysis of the spinal cord following transcriptome reconstruction revealed that Acomys rewires glycosylation biosynthetic pathways, culminating in a specific pro-regenerative proteoglycan signature at SCI site. Our work uncovers that a glycosylation switch is critical for axon regeneration after SCI and identifies ß3gnt7, a crucial enzyme of keratan sulfate biosynthesis, as an enhancer of axon growth.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Animais , Axônios/patologia , Modelos Animais de Doenças , Glicosilação , Camundongos , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Coluna Vertebral/fisiopatologia
10.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1850-1860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33237866

RESUMO

SEDA (SEquence DAtaset builder) is a multiplatform desktop application for the manipulation of FASTA files containing DNA or protein sequences. The convenient graphical user interface gives access to a collection of simple (filtering, sorting, or file reformatting, among others) and advanced (BLAST searching, protein domain annotation, gene annotation, and sequence alignment) utilities not present in similar applications, which eases the work of life science researchers working with DNA and/or protein sequences, especially those who have no programming skills. This paper presents general guidelines on how to build efficient data handling protocols using SEDA, as well as practical examples on how to prepare high-quality datasets for single gene phylogenetic studies, the characterization of protein families, or phylogenomic studies. The user-friendliness of SEDA also relies on two important features: (i) the availability of easy-to-install distributable versions and installers of SEDA, including a Docker image for Linux, and (ii) the facility with which users can manage large datasets. SEDA is open-source, with GNU General Public License v3.0 license, and publicly available at GitHub (https://github.com/sing-group/seda). SEDA installers and documentation are available at https://www.sing-group.org/seda/.


Assuntos
Proteínas , Software , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência
11.
Virus Evol ; 7(1): veab031, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34408913

RESUMO

Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.

12.
Interdiscip Sci ; 13(2): 334-343, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34009546

RESUMO

The identification of clinically relevant bacterial amino acid changes can be performed using different methods aimed at the identification of genes showing positively selected amino acid sites (PSS). Nevertheless, such analyses are time consuming, and the frequency of genes showing evidence for PSS can be low. Therefore, the development of a pipeline that allows the quick and efficient identification of the set of genes that show PSS is of interest. Here, we present Auto-PSS-Genome, a Compi-based pipeline distributed as a Docker image, that automates the process of identifying genes that show PSS using three different methods, namely codeML, FUBAR, and omegaMap. Auto-PSS-Genome accepts as input a set of FASTA files, one per genome, containing all coding sequences, thus minimizing the work needed to conduct positively selected sites analyses. The Auto-PSS-Genome pipeline identifies orthologous gene sets and corrects for multiple possible problems in input FASTA files that may prevent the automated identification of genes showing PSS. A FASTA file containing all coding sequences can also be given as an external global reference, thus easing the comparison of results across species, when gene names are different. In this work, we use Auto-PSS-Genome to analyse Mycobacterium leprae (that causes leprosy), and the closely related species M. haemophilum, that mainly causes ulcerating skin infections and arthritis in persons who are severely immunocompromised, and in children causes cervical and perihilar lymphadenitis. The genes identified in these two species as showing PSS may be those that are partially responsible for virulence and resistance to drugs.


Assuntos
Aminoácidos/química , Bactérias , Criança , Genoma Bacteriano , Humanos , Mycobacterium leprae/genética , Virulência
13.
Front Microbiol ; 11: 1527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774329

RESUMO

Baeocytous cyanobacteria (Pleurocapsales/Subsection II) can thrive in a wide range of habitats on Earth but, compared to other cyanobacterial lineages, they remain poorly studied at genomic level. In this study, we sequenced the first genome from a member of the Hyella genus - H. patelloides LEGE 07179, a recently described species isolated from the Portuguese foreshore. This genome is the largest of the thirteen baeocyte-forming cyanobacterial genomes sequenced so far, and diverges from the most closely related strains. Comparative analysis revealed strain-specific genes and horizontal gene transfer events between H. patelloides and its closest relatives. Moreover, H. patelloides genome is distinctive by the number and diversity of natural product biosynthetic gene clusters (BGCs). The majority of these clusters are strain-specific BGCs with a high probability of synthesizing novel natural products. One BGC was identified as being putatively involved in the production of terminal olefin. Our results showed that, H. patelloides produces hydrocarbon with C15 chain length, and synthesizes C14, C16, and C18 fatty acids exceeding 4% of the dry cell weight. Overall, our data contributed to increase the information on baeocytous cyanobacteria, and shed light on H. patelloides evolution, phylogeny and natural product biosynthetic potential.

14.
Sci Rep ; 10(1): 12832, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732947

RESUMO

The size and shape of organs is tightly controlled to achieve optimal function. Natural morphological variations often represent functional adaptations to an ever-changing environment. For instance, variation in head morphology is pervasive in insects and the underlying molecular basis is starting to be revealed in the Drosophila genus for species of the melanogaster group. However, it remains unclear whether similar diversifications are governed by similar or different molecular mechanisms over longer timescales. To address this issue, we used species of the virilis phylad because they have been diverging from D. melanogaster for at least 40 million years. Our comprehensive morphological survey revealed remarkable differences in eye size and head shape among these species with D. novamexicana having the smallest eyes and southern D. americana populations having the largest eyes. We show that the genetic architecture underlying eye size variation is complex with multiple associated genetic variants located on most chromosomes. Our genome wide association study (GWAS) strongly suggests that some of the putative causative variants are associated with the presence of inversions. Indeed, northern populations of D. americana share derived inversions with D. novamexicana and they show smaller eyes compared to southern ones. Intriguingly, we observed a significant enrichment of genes involved in eye development on the 4th chromosome after intersecting chromosomal regions associated with phenotypic differences with those showing high differentiation among D. americana populations. We propose that variants associated with chromosomal inversions contribute to both intra- and interspecific variation in eye size among species of the virilis phylad.


Assuntos
Variação Anatômica/genética , Inversão Cromossômica/genética , Drosophila/anatomia & histologia , Drosophila/genética , Olho/anatomia & histologia , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Tamanho do Órgão/genética , Animais , Fenótipo , Especificidade da Espécie
15.
Mol Biol Evol ; 37(9): 2661-2678, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413142

RESUMO

Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Variação Estrutural do Genoma , Microbiota , Seleção Genética , Aclimatação/genética , Altitude , Animais , Vírus de DNA , Drosophila melanogaster/virologia , Europa (Continente) , Genoma Mitocondrial , Haplótipos , Vírus de Insetos , Masculino , Filogeografia , Polimorfismo de Nucleotídeo Único
16.
Nat Commun ; 11(1): 1949, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327653

RESUMO

Genetic diversity of Mycobacterium tuberculosis affects immune responses and clinical outcomes of tuberculosis (TB). However, how bacterial diversity orchestrates immune responses to direct distinct TB severities is unknown. Here we study 681 patients with pulmonary TB and show that M. tuberculosis isolates from cases with mild disease consistently induce robust cytokine responses in macrophages across multiple donors. By contrast, bacteria from patients with severe TB do not do so. Secretion of IL-1ß is a good surrogate of the differences observed, and thus to classify strains as probable drivers of different TB severities. Furthermore, we demonstrate that M. tuberculosis isolates that induce low levels of IL-1ß production can evade macrophage cytosolic surveillance systems, including cGAS and the inflammasome. Isolates exhibiting this evasion strategy carry candidate mutations, generating sigA recognition boxes or affecting components of the ESX-1 secretion system. Therefore, we provide evidence that M. tuberculosis strains manipulate host-pathogen interactions to drive variable TB severities.


Assuntos
Citosol/imunologia , Interleucina-1beta/metabolismo , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais/imunologia , Tuberculose Pulmonar/imunologia , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Citocinas/metabolismo , Feminino , Genoma Bacteriano/genética , Humanos , Evasão da Resposta Imune , Imunomodulação , Inflamassomos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único , Tuberculose Pulmonar/microbiologia , Virulência/genética
17.
BMC Med Genomics ; 12(1): 145, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655597

RESUMO

BACKGROUND: Wild-type (wt) polyglutamine (polyQ) regions are implicated in stabilization of protein-protein interactions (PPI). Pathological polyQ expansion, such as that in human Ataxin-1 (ATXN1), that causes spinocerebellar ataxia type 1 (SCA1), results in abnormal PPI. For ATXN1 a larger number of interactors has been reported for the expanded (82Q) than the wt (29Q) protein. METHODS: To understand how the expanded polyQ affects PPI, protein structures were predicted for wt and expanded ATXN1, as well as, for 71 ATXN1 interactors. Then, the binding surfaces of wt and expanded ATXN1 with the reported interactors were inferred. RESULTS: Our data supports that the polyQ expansion alters the ATXN1 conformation and that it enhances the strength of interaction with ATXN1 partners. For both ATXN1 variants, the number of residues at the predicted binding interface are greater after the polyQ, mainly due to the AXH domain. Moreover, the difference in the interaction strength of the ATXN1 variants was due to an increase in the number of interactions at the N-terminal region, before the polyQ, for the expanded form. CONCLUSIONS: There are three regions at the AXH domain that are essential for ATXN1 PPI. The N-terminal region is responsible for the strength of the PPI with the ATXN1 variants. How the predicted motifs in this region affect PPI is discussed, in the context of ATXN1 post-transcriptional modifications.


Assuntos
Ataxina-1/metabolismo , Motivos de Aminoácidos , Animais , Ataxina-1/química , Ataxina-1/genética , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
18.
Sci Rep ; 9(1): 13578, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537891

RESUMO

In 2003, the pest species Bactrocera dorsalis (Hendel) was reported for the first time in Kenya, Africa, and subsequently on many other African countries. In this work, 20 locations along the Rusitu Valley (Zimbabwe) were sampled in 2014 during the sweet oranges fruiting seasons, to verify the fruit fly taxonomy, invasion source, population dynamics, and fruit damage. The trapped fruit flies were identified using morphological traits and molecular techniques, as B. dorsalis. The haplotype network analysis revealed that Zimbabwe COI sequences were identical to other African B. dorsalis sequences. Fruit fly trappings per day varied during the year, although it remained always high. The same applies to fruit damage, most likely due to the permanent availability of cultivated and wild fruit varieties during the year. Rusitu Valley was invaded by B. dorsalis, most likely from neighbouring countries. Ten years after the first report in Kenya, the complete or near complete invasion of Africa has been achieved by B. dorsalis. In northern Africa the distribution is clearly limited by the Sahara desert. The large population size, the polyphagous nature of the species, and the continuous availability of suitable host fruit species during the year complicates the eradication of this species.


Assuntos
Citrus sinensis/crescimento & desenvolvimento , Tephritidae/classificação , Tephritidae/patogenicidade , África , Animais , Ásia , Citrus sinensis/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Frutas/crescimento & desenvolvimento , Frutas/parasitologia , Filogenia , Filogeografia , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Tephritidae/genética , Zimbábue
19.
Front Plant Sci ; 10: 879, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379893

RESUMO

Non-self gametophytic self-incompatibility (GSI) recognition system is characterized by the presence of multiple F-box genes tandemly located in the S-locus, that regulate pollen specificity. This reproductive barrier is present in Solanaceae, Plantaginacea and Maleae (Rosaceae), but only in Petunia functional assays have been performed to get insight on how this recognition mechanism works. In this system, each of the encoded S-pollen proteins (called SLFs in Solanaceae and Plantaginaceae /SFBBs in Maleae) recognizes and interacts with a sub-set of non-self S-pistil proteins, called S-RNases, mediating their ubiquitination and degradation. In Petunia there are 17 SLF genes per S-haplotype, making impossible to determine experimentally each SLF specificity. Moreover, domain -swapping experiments are unlikely to be performed in large scale to determine S-pollen and S-pistil specificities. Phylogenetic analyses of the Petunia SLFs and those from two Solanum genomes, suggest that diversification of SLFs predate the two genera separation. Here we first identify putative SLF genes from nine Solanum and 10 Nicotiana genomes to determine how many gene lineages are present in the three genera, and the rate of origin of new SLF gene lineages. The use of multiple genomes per genera precludes the effect of incompleteness of the genome at the S-locus. The similar number of gene lineages in the three genera implies a comparable effective population size for these species, and number of specificities. The rate of origin of new specificities is one per 10 million years. Moreover, here we determine the amino acids positions under positive selection, those involved in SLF specificity recognition, using 10 Petunia S-haplotypes with more than 11 SLF genes. These 16 amino acid positions account for the differences of self-incompatible (SI) behavior described in the literature. When SLF and S-RNase proteins are divided according to the SI behavior, and the positively selected amino acids classified according to hydrophobicity, charge, polarity and size, we identified fixed differences between SI groups. According to the in silico 3D structure of the two proteins these amino acid positions interact. Therefore, this methodology can be used to infer SLF/S-RNase specificity recognition.

20.
BMC Evol Biol ; 19(1): 126, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31215418

RESUMO

BACKGROUND: L-ascorbate (Vitamin C) is an important antioxidant and co-factor in eukaryotic cells, and in mammals it is indispensable for brain development and cognitive function. Vertebrates usually become L-ascorbate auxothrophs when the last enzyme of the synthetic pathway, an L-gulonolactone oxidase (GULO), is lost. Since Protostomes were until recently thought not to have a GULO gene, they were considered to be auxothrophs for Vitamin C. RESULTS: By performing phylogenetic analyses with tens of non-Bilateria and Protostomian genomes, it is shown, that a GULO gene is present in the non-Bilateria Placozoa, Myxozoa (here reported for the first time) and Anthozoa groups, and in Protostomians, in the Araneae family, the Gastropoda class, the Acari subclass (here reported for the first time), and the Priapulida, Annelida (here reported for the first time) and Brachiopoda phyla lineages. GULO is an old gene that predates the separation of Animals and Fungi, although it could be much older. We also show that within Protostomes, GULO has been lost multiple times in large taxonomic groups, namely the Pancrustacea, Nematoda, Platyhelminthes and Bivalvia groups, a pattern similar to that reported for Vertebrate species. Nevertheless, we show that Drosophila melanogaster seems to be capable of synthesizing L-ascorbate, likely through an alternative pathway, as recently reported for Caenorhabditis elegans. CONCLUSIONS: Non-Bilaterian and Protostomians seem to be able to synthesize Vitamin C either through the conventional animal pathway or an alternative pathway, but in this animal group, not being able to synthesize L-ascorbate seems to be the exception rather than the rule.


Assuntos
Ácido Ascórbico/metabolismo , Eucariotos/enzimologia , Eucariotos/genética , Evolução Molecular , L-Gulonolactona Oxidase/genética , Animais , Drosophila melanogaster/genética , Eucariotos/classificação , Eucariotos/metabolismo , Genoma , L-Gulonolactona Oxidase/química , L-Gulonolactona Oxidase/metabolismo , Modelos Moleculares , Filogenia , Vertebrados/classificação , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...