Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(3): 959-968, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36317949

RESUMO

BACKGROUND: A first step in any pest management initiative is recognizing the existing problem - identifying the pest species and its abundance and dispersal capacities. This is not simple and even more challenging when insidious (invasive) species are involved constituting a pest complex. Understanding a species' population diversity and structure can provide a better understanding of its adaptation and relative pest potential. Such is the need for the native rice stink bug Oebalus poecilus and the invasive O. ypsilongriseus in low and high flatlands of South America. RESULTS: The genetic structure differed between both rice stink bug species (FST  = 0.157, P = 0.001), where 84% of the overall genetic variability takes place within species and three genetic groups were recognized through Bayesian approach (K = 3). Oebalus poecilus exhibited slightly higher genetic diversity (HE  = 0.253) and structuring (FST  = 0.050, P = 0.001) than the invasive O. ypsilongriseus (HE  = 0.211; FST  = 0.038, P = 0.013). Nonetheless, only the former exhibited significant correlation between genetic and geographic distances (r = 0.48, P = 0.013). CONCLUSION: Despite the pointed peculiarities, the obtained results indicate overlap in both species' occurrence and similar genetic structure allowing for a compound problem to be dealt with as the complex requires managing without, as yet, a prevailing species or a niche specialization. © 2022 Society of Chemical Industry.


Assuntos
Heterópteros , Oryza , Animais , Teorema de Bayes , Heterópteros/genética , Variação Genética
2.
PLoS One ; 9(10): e111396, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347417

RESUMO

Individual traits vary among and within populations, and the co-occurrence of different endosymbiont species within a host may take place under varying endosymbiont loads in each individual host. This makes the recognition of the potential impact of such endosymbiont associations in insect species difficult, particularly in insect pest species. The maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae), a key pest species of stored cereal grains, exhibits associations with two endosymbiotic bacteria: the obligatory endosymbiont SZPE ("Sitophilus zeamais Primary Endosymbiont") and the facultative endosymbiont Wolbachia. The impact of the lack of SZPE in maize weevil physiology is the impairment of nutrient acquisition and energy metabolism, while Wolbachia is an important factor in reproductive incompatibility. However, the role of endosymbiont load and co-occurrence in insect behavior, grain consumption, body mass and subsequent reproductive factors has not yet been explored. Here we report on the impacts of co-occurrence and varying endosymbiont loads achieved via thermal treatment and antibiotic provision via ingested water in the maize weevil. SZPE exhibited strong effects on respiration rate, grain consumption and weevil body mass, with observed effects on weevil behavior, particularly flight activity, and potential consequences for the management of this pest species. Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect. SZPE suppression delayed weevil emergence, which reduced the insect population growth rate, and the thermal inactivation of both symbionts prevented insect reproduction. Such findings are likely important for strain divergences reported in the maize weevil and their control, aspects still deserving future attention.


Assuntos
Besouros/microbiologia , Simbiose , Wolbachia/patogenicidade , Animais , Carga Bacteriana , Besouros/fisiologia , Locomoção , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...