Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 361: 43-53, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367327

RESUMO

Paraquat (PQ) is a widely used herbicide that can cross the dopaminergic neuronal membrane, accumulate in mitochondria and damage complex I of the electron transport chain, leading to neuronal death. In Drosophila melanogaster, PQ exposure leads to the development of parkinsonism and is a classical model for studying Parkinson's Disease (PD). Muscle mitochondrial dysfunction, affecting survival and locomotion, is described in familial PD in D. melanogaster mutants. However, no study has shown the effects of PQ-induced parkinsonism in D. melanogaster regarding muscle ultrastructure and locomotor behavior at different ages. Thus, we evaluated survival, locomotion, and morphological parameters of mitochondria and myofibrils using transmission electron microscopy in 2 and 15-day-old D. melanogaster, treated with different PQ doses: control, 10, 50, 100, 150, and 200 mM. PQ100mM presented 100% lethality in 15-day-old D. melanogaster, while in 2-day-old animals PQ150mM produced 20% lethality. Bradykinesia was only observed in 15-day-old D. melanogaster treated with PQ10 mM and PQ50 mM. However, these results are unlikely to be associated with changes to morphology. Taken together, our data indicate pathophysiological differences between PQ-induced parkinsonism and familial parkinsonism in D. melanogaster (resultant from gene mutations), demonstrating for the first time a differential susceptibility to PQ in two developmental stages.


Assuntos
Herbicidas , Transtornos Parkinsonianos , Animais , Antioxidantes/farmacologia , Drosophila melanogaster/genética , Herbicidas/toxicidade , Paraquat/toxicidade , Transtornos Parkinsonianos/induzido quimicamente
2.
Mol Cell Biochem ; 476(2): 649-661, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33073314

RESUMO

The phytoalexin Resveratrol (3,5,4'-trihydroxystilbene; RSV) has been related to numerous beneficial effects on health by its cytoprotection and chemoprevention activities. Liver fibrosis is characterized by the extracellular matrix accumulation after hepatic injury and can lead to cirrhosis. Hepatic stellate cells (HSC) play a crucial role during fibrogenesis and liver wound healing by changing their quiescent phenotype to an activated phenotype for protecting healthy areas from damaged areas. Strategies on promoting the activated HSC death, the quiescence return or the cellular activation stimuli decrease play an important role on reducing liver fibrosis. Here, we evaluated the RSV effects on some markers of activation in GRX, an HSC model. We further evaluated the RSV influence in the ability of GRX on releasing inflammatory mediators. RSV at 1 and 10 µM did not alter the protein content of α-SMA, collagen I and GFAP; but 50 µM increased the content of these activation-related proteins. Also, RSV did not change the myofibroblast-like morphology of GRX. Interestingly, RSV at 10 and 50 µM decreased the GRX migration and collagen-I gel contraction. Finally, we showed that RSV triggered the increase in the TNF-α and IL-10 content in culture media of GRX while the opposite occurred for the IL-6 content. Altogether, these results suggested that RSV did not decrease the activation state of GRX and oppositely, triggered a pro-activation effect at the 50 µM concentration. However, despite the increase of TNF- α in culture media, these results on IL-6 and IL-10 secretion were in accordance with the anti-inflammatory role of RSV in our model.


Assuntos
Antioxidantes/farmacologia , Citocinas/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Inflamação/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Resveratrol/farmacologia , Animais , Linhagem Celular , Proliferação de Células , Células Estreladas do Fígado/imunologia , Células Estreladas do Fígado/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo
3.
Cell Biol Toxicol ; 33(2): 197-206, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27744523

RESUMO

Activated hepatic stellate cells (HSC) are the major source of collagen I in liver fibrosis. Eugenia uniflora L. is a tree species that is widely distributed in South America. E. uniflora L. fruit-popularly known as pitanga-has been shown to exert beneficial properties. Autophagy contributes to the maintenance of cellular homeostasis and survival under stress situation, but it has also been suggested to be an alternative cell death pathway. Mitochondria play a pivotal role on signaling cell death. Mitophagy of damaged mitochondria is an important cell defense mechanism against organelle-mediated cell death signaling. We previously found that purple pitanga extract induced mitochondrial dysfunction, cell cycle arrest, and death by apoptosis and necrosis in GRX cells, a well-established activated HSC line. We evaluated the effects of 72-h treatment with crescent concentrations of purple pitanga extract (5 to 100 µg/mL) on triggering autophagy in GRX cells, as this is an important mechanism to cells under cytotoxic conditions. We found that all treated cells presented an increase in the mRNA expression of autophagy-related protein 7 (ATG7). Concomitantly, flow cytometry and ultrastructural analysis of treated cells revealed an increase of autophagosomes/autolysosomes that consequentially led to an increased mitophagy. As purple pitanga extract was previously found to be broadly cytotoxic to GRX cells, we postulated that autophagy contributes to this scenario, where cell death seems to be an inevitable fate. Altogether, the effectiveness on inducing activated HSC death can make purple pitanga extract a good candidate on treating liver fibrosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Eugenia/química , Células Estreladas do Fígado/patologia , Extratos Vegetais/farmacologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Linhagem Celular , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fitoterapia , Extratos Vegetais/uso terapêutico
4.
Cell Biochem Biophys ; 71(2): 657-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25234614

RESUMO

Resveratrol has been the focus of numerous studies reporting opposite effects that depend on its concentration. The GRX is an activated hepatic stellate cells model used to study liver fibrosis development and resolution. We recently showed that GRX treatment with RSV (0.1-50 µM) for 24 h triggered dose-dependent pro-oxidant effects, resulting in cytotoxicity and cell damage only at the highest concentration. Here, we evaluated whether the pro-oxidant effect of resveratrol treatment is accompanied by alterations on the GRX mitochondrial metabolism, and whether the concomitantly autophagy/mitophagy induction can influence on cell death or survival. We demonstrated that all concentrations of resveratrol promoted an increase of GRX cell death signals, altering the mitochondrial dynamics and function. Cells treated with all resveratrol concentrations presented higher autophagy/mitophagy features, but only treatments with 1 and 10 µM of resveratrol-induced mitochondrial biogenesis. Since cell damage was higher and there was no mitochondrial biogenesis in GRX treated with 50 µM of resveratrol, we suggest that these cells failed to remove and replace all damaged mitochondria. In conclusion, the cytotoxic effect of resveratrol that effectively promotes cell death could be related to the interrelation between the concomitant induction of apoptosis, autophagy/mitophagy and mitochondrial biogenesis in GRX.


Assuntos
Antioxidantes/farmacologia , Apoptose , Células Estreladas do Fígado/metabolismo , Mitofagia , Biogênese de Organelas , Estilbenos/farmacologia , Animais , Linhagem Celular , Células Estreladas do Fígado/efeitos dos fármacos , Camundongos , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...