Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38931388

RESUMO

Melanoma, primarily caused by solar ultraviolet (UV) radiation, can be prevented by the use of sunscreens. However, the use of synthetic sunscreens raises environmental concerns. Natural compounds with antioxidant photoprotective properties and cytotoxic effects against cancer cells can be promising for the prevention and treatment of melanoma with less environmental effect. This study focuses on Melaleuca leucadendron essential oil (EO) for photoprotection and antitumor applications. EO was hydrodistilled from M. leucadendron leaves with a 0.59% yield. Gas chromatography-mass spectrometry detected monoterpenes and sesquiterpenes. Nanoemulsions were prepared with (NE-EO) and without EO (NE-B) using the phase inversion method, showing good stability, spherical or oval morphology, and a pseudoplastic profile. Photoprotective activity assessed spectrophotometrically showed that the NE-EO was more effective than NE-B and free EO. Antioxidant activity evaluated by DPPH and ABTS methods indicated that pure and nanoemulsified EO mainly inhibited the ABTS radical, showing IC50 40.72 and 5.30 µg/mL, respectively. Cytotoxicity tests on L-929 mouse fibroblasts, NGM human melanocyte, B16-F10 melanoma, and MeWo human melanoma revealed that EO and NE-EO were more cytotoxic to melanoma cells than to non-tumor cells. The stable NE-EO demonstrates potential for melanoma prevention and treatment. Further research is required to gain a better understanding of these activities.

2.
Pharmaceutics ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38931824

RESUMO

The treatment of skin and soft tissue infections (SSTIs) can be challenging due to bacterial resistance, particularly from strains like MRSA and biofilm formation. However, combining conventional antibiotics with natural products shows promise in treating SSTIs. The objective of this study is to develop a nanoemulsion-based hydrogel containing Protium spruceanum extract and mupirocin and evaluate its potential for the treatment of SSTIs. The nanoemulsion was obtained by phase inversion and subsequently characterized. The antibacterial activity was evaluated in vitro against S. aureus MRSA, including the synergism of the combination, changes in membrane permeability using flow cytometry, and the anti-biofilm effect. In addition, the irritative potential was evaluated by the HET-CAM assay. The combination exhibited synergistic antibacterial activity against S. aureus and MRSA due to the extract enhancing membrane permeability. The hydrogel demonstrated suitable physicochemical properties, inhibited biofilm formation, and exhibited low irritation. The formulation was nanometric (176.0 ± 1.656 nm) and monodisperse (polydispersity index 0.286 ± 0.011). It exhibited a controlled release profile at 48 h and high encapsulation efficacy (94.29 ± 4.54% for quercitrin and 94.20 ± 5.44% for mupirocin). Therefore, these findings suggest that the hydrogel developed could be a safe and effective option for treating SSTIs.

3.
Pharmaceutics ; 16(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931921

RESUMO

Chagas disease (CD) is a worldwide public health problem. Benznidazole (BZ) is the drug used to treat it. However, in its commercial formulation, it has significant side effects and is less effective in the chronic phase of the infection. The development of particulate systems containing BZ is therefore being promoted. The objective of this investigation was to develop polymeric nanoparticles loaded with BZ and examine their trypanocidal impact in vitro. Two formulas (BNP1 and BNP2) were produced through double emulsification and freeze drying. Subsequent to physicochemical and morphological assessment, both formulations exhibited adequate yield, average particle diameter, and zeta potential for oral administration. Cell viability was assessed in H9C2 and RAW 264.7 cells in vitro, revealing no cytotoxicity in cardiomyocytes or detrimental effects in macrophages at specific concentrations. BNP1 and BNP2 enhanced the effect of BZ within 48 h using a treatment of 3.90 µg/mL. The formulations notably improved NO reduction, particularly BNP2. The findings imply that the compositions are suitable for preclinical research, underscoring their potential as substitutes for treating CD. This study aids the quest for new BZ formulations, which are essential in light of the disregard for the treatment of CD and the unfavorable effects associated with its commercial product.

4.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673856

RESUMO

Immune response to biomaterials, which is intimately related to their surface properties, can produce chronic inflammation and fibrosis, leading to implant failure. This study investigated the development of magnetic nanoparticles coated with silica and incorporating the anti-inflammatory drug naproxen, aimed at multifunctional biomedical applications. The synthesized nanoparticles were characterized using various techniques that confirmed the presence of magnetite and the formation of a silica-rich bioactive glass (BG) layer. In vitro studies demonstrated that the nanoparticles exhibited bioactive properties, forming an apatite surface layer when immersed in simulated body fluid, and biocompatibility with bone cells, with good viability and alkaline phosphatase activity. Naproxen, either free or encapsulated, reduced nitric oxide production, an inflammatory marker, while the BG coating alone did not show anti-inflammatory effects in this study. Overall, the magnetic nanoparticles coated with BG and naproxen showed promise for biomedical applications, especially anti-inflammatory activity in macrophages and in the bone field, due to their biocompatibility, bioactivity, and osteogenic potential.


Assuntos
Materiais Revestidos Biocompatíveis , Vidro , Nanopartículas de Magnetita , Naproxeno , Naproxeno/farmacologia , Naproxeno/química , Vidro/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Nanopartículas de Magnetita/química , Animais , Camundongos , Humanos , Óxido Nítrico/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Dióxido de Silício/química , Sobrevivência Celular/efeitos dos fármacos , Células RAW 264.7 , Osteogênese/efeitos dos fármacos
5.
Life Sci ; 337: 122353, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104862

RESUMO

AIMS: Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS: C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS: Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE: In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.


Assuntos
Alcaloides , Fármacos Neuroprotetores , Encefalopatia Associada a Sepse , Masculino , Camundongos , Animais , Encefalopatia Associada a Sepse/complicações , Catalase , Metaloproteinase 9 da Matriz , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico , Fator Neurotrófico Derivado do Encéfalo , Interleucina-6 , Camundongos Endogâmicos C57BL , Alcaloides/farmacologia , Alcaloides/uso terapêutico
6.
Molecules ; 28(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067542

RESUMO

Chagas disease (CD) is a worldwide public health problem, and the drugs available for its treatment have severe limitations. Red propolis is a natural extract known for its high content of phenolic compounds and for having activity against T. cruzi. The aim of this study was to investigate the trypanocidal potential of red propolis to isolate, identify, and indicate the mode of action of the bioactive compounds. The results revealed that the total phenolic content was 15.4 mg GAE/g, and flavonoids were 7.2 mg QE/g. The extract was fractionated through liquid-liquid partitioning, and the trypanocidal potential of the samples was evaluated using the epimastigote forms of the Y strain of T. cruzi. In this process, one compound was characterized by MS, 1H, and 13C NMR and identified as vestitol. Cytotoxicity was evaluated employing MRC-5 fibroblasts and H9C2 cardiomyocytes, showing cytotoxic concentrations above 15.62 µg/mL and 31.25 µg/mL, respectively. In silico analyses were applied, and the data suggested that the substance had a membrane-permeation-enhancing effect, which was confirmed through an in vitro assay. Finally, a molecular docking analysis revealed a higher affinity of vestitol with farnesyl diphosphate synthase (FPPS). The identified isoflavan appears to be a promising lead compound for further development to treat Chagas disease.


Assuntos
Doença de Chagas , Própole , Tripanossomicidas , Trypanosoma cruzi , Humanos , Própole/química , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Flavonoides/química , Extratos Vegetais/farmacologia , Tripanossomicidas/química
7.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982196

RESUMO

Many activities have been described for propolis, including, antiviral, antibacterial, antifungal, anti-inflammatory, immunoregulatory, antioxidant and wound healing properties. Recently, propolis has been highlighted due to its potential application in the pharmaceutical and cosmetic industries, motivating a better understanding of its antioxidant and anti-inflammatory activities. Propolis and its main polyphenolic compounds presented high antioxidant activity, and effectiveness as broad spectrum UVB and UVA photoprotection sunscreens. Through a qualitative phytochemical screening, the ethanolic red propolis extracts (EEPV) (70% at room temperature and 70% at a hot temperature) presented a positive result for flavonoids and terpenoids. It presented an antioxidant activity for reducing 50% of DPPH of 17 and 12 µg/mL for extraction at room temperature and at a hot temperature, respectively. The UPLC-QTOF-MS/MS analysis allowed the annotation of 40 substances for EEPV-Heated and 42 substances for EEPV-Room Temperature. The IC50 results of the ABTS scavenging activity was 4.7 µg/mL for both extractions, at room temperature and at a hot temperature. Additionally, we also evaluated the cytotoxic profile of propolis extracts against macrophage (RAW 264.7 cells) and keratinocytes (HaCaT cells), which showed non-cytotoxic doses in cell viability assays even after a long period of exposure. In addition, propolis extracts showed antibacterial activity for Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), demonstrating potential biological activity for the creation of formulations aimed at disease control and prevention.


Assuntos
Anti-Infecciosos , Ascomicetos , Própole , Própole/farmacologia , Própole/química , Antioxidantes/farmacologia , Antioxidantes/química , Protetores Solares/farmacologia , Espectrometria de Massas em Tandem , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Vaccines (Basel) ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851272

RESUMO

BACKGROUND: The adjuvants' optimal dose and the administration route can directly influence the epitope recognition patterns and profiles of innate response. We aimed to establish the effect and the optimal dose of adjuvant systems for proposing a vaccine candidate to be employed with Leishmania (Viannia) braziliensis. METHODS: We evaluated the adjuvants saponin (SAP), monophosphoryl lipid A (MPL) and resiquimod (R-848) isolated and combined as adjuvant systems in a lower dose corresponding to 25%, 33%, and 50% of each adjuvant total dose. Male outbred BALB/c mice were divided into 13 groups, SAP, MPL, and R-848 isolated, and the adjuvant systems SAP plus MPL (SM), SAP plus R-848 (SR), and MPL plus R-848 (MR). RESULTS: SM50 increased levels of all chemokines analyzed and TNF production, while it presented an increased inflammatory cell infiltrate in the skin with macrophage recruitment. Thus, we proposed a vaccine candidate employing L. (V.) braziliensis antigen associated with the SM adjuvant system against experimental L. (Leishmania) infantum challenge. We observed a significant increase in the frequency of cells expressing the central and effector memory CD4+ T cells phenotype in immunized mice with the LBSM50. In the liver, there was a decreased parasite load when mice received LBSM50. CONCLUSIONS: When combined with L. (V.) braziliensis antigen, SM50 increases TNF and IFN-γ, which generates central and effector memory CD4+ T cells. Therefore, using an adjuvant system can promote an effective innate immune response with the potential to compose future vaccines.

9.
Arch Physiol Biochem ; : 1-15, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36328030

RESUMO

CONTEXT: The role of silymarin in hepatic lipid dysfunction and its possible mechanisms of action were investigated. OBJECTIVE: To evaluate the effects of silymarin on hepatic and metabolic profiles in mice fed with 30% fructose for 8 weeks. METHODS: We evaluated the antioxidant profile of silymarin; mice consumed 30% fructose and were treated with silymarin (120 mg/kg/day or 240 mg/kg/day). We performed biochemical, redox status, and histopathological assays. RT-qPCR was performed to detect ACC-1, ACC-2, FAS, and CS expression, and western blotting to detect PGC-1α levels. RESULTS: Silymarin contains high levels of phenolic compounds and flavonoids and exhibited significant antioxidant capacity in vitro. In vivo, the fructose-fed groups showed increased levels of AST, ALT, SOD/CAT, TBARS, hepatic TG, and cholesterol, as well as hypertriglyceridaemia, hypercholesterolaemia, and increased ACC-1 and FAS. Silymarin treatment reduced these parameters and increased mRNA levels and activity of hepatic citrate synthase. CONCLUSIONS: These results suggest that silymarin reduces worsening of NAFLD.

10.
Pathogens ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145406

RESUMO

The spleen plays a central role in human and canine visceral leishmaniasis, where the activation of the immune response occurs in one of the tissues where Leishmania infantum reproduces. Therefore, this organ is both a target to understand the mechanisms involved in the parasite control and a parameter for assessing the therapeutic response. In this sense, this study aimed to evaluate the main histological, immunological and parasitological aspects in the spleen of symptomatic dogs naturally infected by L. infantum treated with the therapeutic vaccine LBMPL. For this, dogs were divided into four groups: dogs uninfected and untreated (NI group); L. infantum-infected dogs that were not treated (INT group); L. infantum-infected dogs that received treatment only with monophosphoryl lipid A adjuvant (MPL group); and L. infantum-infected dogs that received treatment with the vaccine composed by L. braziliensis promastigote proteins associated with MPL adjuvant (LBMPL group). Ninety days after the therapeutics protocol, the dogs were euthanized and the spleen was collected for the proposed evaluations. Our results demonstrated a reduction of hyperplasia of red pulp and follicular area of white pulp, increased mRNA expression of IFN-γ, TNF-α, IL-12 and iNOS, and decreased IL-10 and TGF-ß1, and intense reduction of splenic parasitism in dogs treated with the LBMPL vaccine. These results possibly suggest that the pro-inflammatory environment promoted the progressive organization of the splenic architecture favoring the cellular activation, with consequent parasite control. Along with previously obtained data, our results propose the LBMPL vaccine as a possible treatment strategy for canine visceral leishmaniasis (CVL).

11.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142698

RESUMO

Modified release systems depend on the selection of an appropriate agent capable of controlling the release of the drug, sustaining the therapeutic action over time, and/or releasing the drug at the level of a particular tissue or target organ. Polyethylene glycol 4000 (PEG 4000) is commonly employed in drug release formulations while polymethyl methacrylate (PMMA) is non-toxic and has a good solubility in organic solvents. This study aimed at the incorporation of ketoconazole in PMMA-g-PEG 4000 and its derivatives, thus evaluating its release profile and anti-Candida albicans and cytotoxic activities. Ketoconazole was characterized and incorporated into the copolymers. The ketoconazole incorporated in the copolymer and its derivatives showed an immediate release profile. All copolymers with ketoconazole showed activity against Candida albicans and were non-toxic to human cells in the entire concentration tested.


Assuntos
Candida albicans , Cetoconazol , Antifúngicos/farmacologia , Humanos , Cetoconazol/farmacologia , Polietilenoglicóis , Polimetil Metacrilato , Solventes
12.
Exp Parasitol ; 238: 108266, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490799

RESUMO

Treatment for Chagas disease has limited efficacy in the chronic phase. We evaluated benznidazole (BZ) and itraconazole (ITZ) individually and in association in dogs 16 months after infection with a BZ-resistant Trypanosoma cruzi strain. Four study groups (20 animals) were evaluated and treated for 60 days with BZ, ITZ, or BZ + ITZ, and maintained in parallel to control group infected and not treated (INT). All dogs were evaluated in the first, sixth, 12th, 18th and 24th months of study. Polymerase chain reaction (PCR) was negative in 2 of 3 animals in the BZ + ITZ group, 2 of 5 in the BZ group, and 4 of 5 in the ITZ group. Hemoculture performed in the 24th month was negative in all groups. Enzyme-linked immunoassay remained reactive in all treated animals. Echocardiography differentiated treated animals from control animals. Quantitative PCR analysis of cardiac tissue was negative in the BZ + ITZ and BZ groups, positive in 2 of 5 dogs in the ITZ group and in 2 of 3 dogs in the control group, but negative in colon tissue in all groups. Inflammation was significantly reduced in the right atrium and left ventricle of dogs treated with BZ + ITZ and BZ compared with those receiving ITZ alone. Fibrosis was absent in most dogs treated with BZ + ITZ, mild in those treated with BZ or ITZ alone, and intense in the control group. Parasitological and histopathological evaluations showed that BZ + ITZ treatment improved or stabilized the clinical condition of the dogs.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/patologia , Doença de Chagas/veterinária , Cães , Itraconazol/uso terapêutico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico
13.
Parasitol Res ; 120(10): 3475-3486, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476583

RESUMO

With the control of vectorial transmission of Chagas disease caused by metacyclic trypomastigotes (MT) in endemic countries, other pathways of infection have become important. The infection caused by blood trypomastigotes (BT) is relevant in places where the blood transfusion and organ transplantation are poorly controlled. This study aimed to evaluate immunopathogenic parameters in the colon during the acute and chronic phases of experimental infection in Swiss mice infected with BT or MT forms of VL-10 strain of Trypanosoma cruzi. We have found that animals infected with MT forms presented lower survival rate, and higher tissue parasitism in the acute phase of the disease, which may be associated with the exacerbated activation of the immune system with the production of pro-inflammatory cytokines even in the chronic phase of infection. Taken together, these results can also be associated to the maintenance of the inflammatory process in chronic phase and an earlier denervation of myenteric plexus in colon. These findings emphasized the importance of the inoculum source and the strain, once different forms of different strains seem to promote distinct diseases.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Colo , Citocinas , Camundongos , Plexo Mientérico
14.
Pathogens ; 10(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207764

RESUMO

As the development of new drugs for Chagas disease is not a priority due to its neglected disease status, an option for increasing treatment adherence is to explore alternative treatment regimens, which may decrease the incidence of side effects. Therefore, we evaluated the efficacy of different therapeutic schemes with benznidazole (BNZ) on the acute and chronic phases of the disease, using mice infected with strains that have different BNZ susceptibilities. Our results show that the groups of animals infected by VL-10 strain, when treated in the chronic phase with a lower dose of BNZ for a longer period of time (40 mg/kg/day for 40 days) presented better treatment efficacy than with the standard protocol (100 mg/kg/day for 20 days) although the best result in the treatment of the animals infected by the VL-10 strain was with100 mg/kg/day for 40 days. In the acute infection by the Y and VL-10 strains of T. cruzi, the treatment with a standard dose, but with a longer time of treatment (100 mg/kg/day for 40 days) presented the best results. Given these data, our results indicate that for BNZ, the theory of dose and time proportionality does not apply to the phases of infection.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33168611

RESUMO

Chronic Chagas disease might have an impact on benznidazole pharmacokinetics with potential alterations in the therapeutic dosing regimen. This study aims to investigate the influence of chronic Trypanosoma cruzi infection on the pharmacokinetics and biodistribution of benznidazole in mice. Healthy (n = 40) and chronically T. cruzi (Berenice-78 strain)-infected (n = 40) Swiss female 10-month-old mice received a single oral dose of 100 mg/kg of body weight of benznidazole. Serial blood, heart, colon, and brain samples were collected up to 12 h after benznidazole administration. The serum and tissue samples were analyzed using a high-performance liquid chromatography instrument coupled to a diode array detector. Chronic infection by T. cruzi increased the values of the pharmacokinetic parameters absorption rate constant (Ka ) (3.92 versus 1.82 h-1), apparent volume of distribution (V/F) (0.089 versus 0.036 liters), and apparent clearance (CL/F) (0.030 versus 0.011 liters/h) and reduced the values of the time to the maximum concentration of drug in serum (Tmax) (0.67 versus 1.17 h) and absorption half-life (t1/2a ) (0.18 versus 0.38 h). Tissue exposure (area under the concentration-versus-time curve from 0 h to time t for tissue [AUC0-t,tissue]) was longer and higher in the colon (8.15 versus 21.21 µg · h/g) and heart (5.72 versus 13.58 µg · h/g) of chronically infected mice. Chronic infection also increased the benznidazole tissue penetration ratios (AUC0-t,tissue/AUC0-t,serum ratios) of brain, colon, and heart by 1.6-, 3.25-, and 3-fold, respectively. The experimental chronic Chagas disease inflammation-mediated changes in the regulation of membrane transporters probably influence the benznidazole pharmacokinetics and the extent of benznidazole exposure in tissues. These results advise for potential alterations in benznidazole pharmacokinetics in chronic Chagas disease patients with possibilities of changes in the standard dosing regimen.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Feminino , Humanos , Camundongos , Nitroimidazóis/uso terapêutico , Distribuição Tecidual , Tripanossomicidas/uso terapêutico
16.
Exp Parasitol ; 218: 108012, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33011239

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in almost all countries of Latin America. In Brazil, oral infection is becoming the most important mechanism of transmission of the disease in several regions of the country. The gastrointestinal tract is the gateway for the parasite through this route of infection, however, little is known about the involvement of these organs related to oral route. In this sense, the present study evaluated the impact of oral infection on the digestive tract in mice infected by Berenice-78 (Be-78) T. cruzi strain, in comparison with the intraperitoneal route of infection. In this work, the intraperitoneal route group showed a peak of parasitemia similar to the oral route group, however the mortality rate among the orally infected animals was higher when compared to intraperitoneal route. By analyzing the frequency of blood cell populations, differences were mainly observed in CD4+ T lymphocytes, and not in CD8+, presenting an earlier reduction in the number of CD4+ T cells, which persisted for a longer period, in the animals of the oral group when compared with the intraperitoneal group. Animals infected by oral route presented a higher tissue parasitism and inflammatory infiltrate in stomach, duodenum and colon on the 28th day after infection. Therefore, these data suggest that oral infection has a different profile of parasitological and immune responses compared to intraperitoneal route, being the oral route more virulent and with greater tissue parasitism in organs of the gastrointestinal tract evaluated during the acute phase.


Assuntos
Doença de Chagas/patologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/parasitologia , Trypanosoma cruzi/patogenicidade , Administração Oral , Análise de Variância , Animais , Doença de Chagas/mortalidade , Doença de Chagas/parasitologia , Colo/parasitologia , Colo/patologia , Duodeno/parasitologia , Duodeno/patologia , Imunofenotipagem , Masculino , Camundongos , Monócitos/patologia , Parasitemia/mortalidade , Parasitemia/parasitologia , Estômago/parasitologia , Estômago/patologia , Taxa de Sobrevida
17.
Parasitol Res ; 119(12): 4185-4195, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33033848

RESUMO

Leishmania spp. parasites have a complex biological cycle presenting basically two different morphological stages, the amastigote and promastigote forms. In vitro cultivation allows a more complete study of the biological aspects of these parasites, indicating better conditions for infection, immunoassay tests, drug evaluations, and vaccines. Thus, we evaluated the three most used culture media for Leishmania spp., Grace's insect cell culture medium (Grace's), liver infusion tryptose (LIT), and Schneider's insect medium (Schneider's), without supplementation or supplemented with fetal calf serum (FCS) and bovine serum albumin (Albumin) to evaluate the growth, viability, and infectivity of the L. infantum promastigotes. It was observed that promastigote forms have a better growth in LIT and Schneider's with or without FCS when compared to that in Grace's. The supplementation with albumin promoted greater viability of the parasites independent of the medium. For in vitro infection of J774.A1 macrophages using light microscopy and flow cytometry analyses, FCS-supplemented LIT and Grace's promoted higher percentage of infected macrophages and parasite load compared with Schneider's media. Taken together, our results demonstrated that the supplementation of LIT culture medium with FCS is the most suitable strategy to cultivate Leishmania infantum parasites enabling the maintenance of growth and infective parasites for research uses.


Assuntos
Leishmania infantum/efeitos dos fármacos , Leishmania infantum/crescimento & desenvolvimento , Fígado/enzimologia , Parasitologia/métodos , Animais , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Leishmania infantum/fisiologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Compostos Orgânicos/análise , Compostos Orgânicos/farmacologia
18.
Cytokine ; 136: 155255, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866897

RESUMO

Distinct populations of Trypanosoma cruzi interact with mammalian cardiac muscle cells causing different inflammation patterns and low heart functionality. During T. cruzi infection, the extracellular ATP is hydrolyzed to tri- and/or diphosphate nucleotides, based on the infectivity, virulence, and regulation of the inflammatory response. T. cruzi carries out this hydrolysis through the T. cruzi ectonucleotidase, NTPDase-1 (TcNTPDase-1). This study aimed to evaluate the role of TcNTPDase-1 in culture rich in metacyclic trypomastigote forms (MT) and cell culture-derived trypomastigote forms (CT) from Colombiana (discrete typing unit - DTU I), VL-10 (DTU II), and CL (DTU VI) strains of T. cruzi. For this, we measured TcNTPDase-1 activity in suramin-treated and untreated parasites and infected J774 cells and C57BL/6 mice with suramin pre-treated parasites to assess parasitic and inflammatory cardiac profile in the acute phase of infection. Our data indicated a higher TcNTPDase-1 activity for ATP in culture rich in metacyclic trypomastigote forms from Colombiana strain in comparison to those from VL-10 and CL strains. The cell culture-derived trypomastigote forms from CL strain presented higher capacity to hydrolyze ATP than those from Colombiana and VL-10 strains. Suramin inhibited ATP hydrolysis in all studied parasite forms and strains. Suramin pre-treated parasites reduced J774 cell infection and increased nitrite production in vitro. In vivo studies showed a reduction of inflammatory infiltrate in the cardiac tissues of animals infected with cell culture-derived trypomastigote forms from suramin pre-treated Colombiana strain. In conclusion, TcNTPDase-1 activity in trypomastigotes forms drives part of the biological characteristics observed in distinct DTUs and may induce cardiac pathogenesis during T. cruzi infection.


Assuntos
Antígenos CD , Apirase , Doença de Chagas , Proteínas de Protozoários , Trypanosoma cruzi , Fatores de Virulência , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Apirase/genética , Apirase/metabolismo , Linhagem Celular Tumoral , Doença de Chagas/enzimologia , Doença de Chagas/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Especificidade da Espécie , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
Biomed Res Int ; 2020: 1230461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596277

RESUMO

The protozoan Trypanosoma cruzi is responsible for triggering a damage immune response in the host cardiovascular system. This parasite has a high affinity for host lipoproteins and uses the low-density lipoprotein (LDL) receptor for its invasion. Assuming that the presence of LDL cholesterol in tissues could facilitate T. cruzi proliferation, dietary composition may affect the parasite-host relationship. Therefore, the aim of this study was to evaluate myocarditis in T. cruzi-infected C57BL/6 mice-acute phase-fed a high-fat diet and treated with simvastatin, a lipid-lowering medication. Animals (n = 10) were infected with 5 × 103 cells of the VL-10 strain of T. cruzi and treated or untreated daily with 20 mg/kg simvastatin, starting 24 h after infection and fed with a normolipidic or high-fat diet. Also, uninfected mice, treated or not with simvastatin and fed with normolipidic or high-fat diet, were evaluated as control groups. Analyses to measure the production of chemokine (C-C motif) ligand 2 (CCL2), interferon- (IFN-) γ, interleukin- (IL-) 10, and tumor necrosis factor (TNF); total hepatic lipid dosage; cholesterol; and fractions, as well as histopathological analysis, were performed on day 30 using cardiac and fat tissues. Our results showed that the high-fat diet increased (i) parasite replication, (ii) fat accumulation in the liver, (iii) total cholesterol and LDL levels, and (iv) the host inflammatory state through the production of the cytokine TNF. However, simvastatin only reduced the production of CCL2 but not that of other inflammatory mediators or biochemical parameters. Together, our data suggest that the high-fat diet may have worsened the biochemical parameters of the uninfected and T. cruzi-infected animals, as well as favored the survival of circulating parasites.


Assuntos
Doença de Chagas/metabolismo , Dieta Hiperlipídica , Hipolipemiantes/farmacologia , Sinvastatina/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/parasitologia , Animais , Citocinas/sangue , Feminino , Coração/efeitos dos fármacos , Coração/parasitologia , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia
20.
Exp Parasitol ; 210: 107834, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31978394

RESUMO

Studies suggest that the dose of the standard benznidazole (BNZ) treatment regimen might be too high. We investigated the efficacy of BNZ 20 and 40 mg/kg/day compared with standard dose (100 mg/kg/day) to induce cure in mice infected with Trypanosoma cruzi Y strain in the acute and chronic phases of Chagas' disease. Our findings indicate that an experimental treatment with a BNZ low-dose (40 mg/kg/day) is similarly effective as the usual dose in the chronic mice model (100% of cure). In addition, the treatment in the chronic model of Chagas' disease presented better results than the acute model and colon appears to be a key tissue when it comes to evaluating treatment efficacy compared to blood and heart. Therefore, our data suggest the reconsideration of the current therapy, mainly in the chronic phase of the disease.


Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/administração & dosagem , Tripanossomicidas/administração & dosagem , Doença Aguda , Animais , Sangue/parasitologia , Doença de Chagas/parasitologia , Doença Crônica , Colo/parasitologia , Ciclofosfamida/administração & dosagem , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Feminino , Coração/parasitologia , Terapia de Imunossupressão , Camundongos , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Nitroimidazóis/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Trypanosoma cruzi/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...