Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 822, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971889

RESUMO

Translational studies benefit from experimental designs where laboratory organisms use human-relevant behaviors. One such behavior is decision-making, however studying complex decision-making in rodents is labor-intensive and typically restricted to two levels of cost/reward. We design a fully automated, inexpensive, high-throughput framework to study decision-making across multiple levels of rewards and costs: the REward-COst in Rodent Decision-making (RECORD) system. RECORD integrates three components: 1) 3D-printed arenas, 2) custom electronic hardware, and 3) software. We validated four behavioral protocols without employing any food or water restriction, highlighting the versatility of our system. RECORD data exposes heterogeneity in decision-making both within and across individuals that is quantifiably constrained. Using oxycodone self-administration and alcohol-consumption as test cases, we reveal how analytic approaches that incorporate behavioral heterogeneity are sensitive to detecting perturbations in decision-making. RECORD is a powerful approach to studying decision-making in rodents, with features that facilitate translational studies of decision-making in psychiatric disorders.


Assuntos
Comportamento Animal , Tomada de Decisões , Animais , Masculino , Ratos , Camundongos , Oxicodona/administração & dosagem , Recompensa , Consumo de Bebidas Alcoólicas/psicologia , Comportamento Alimentar , Autoadministração , Software
2.
ACS Omega ; 5(22): 12583-12595, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548442

RESUMO

The design of a drug that successfully overcomes the constraints imposed by the blood-brain barrier (BBB, which acts as a gatekeeper to the entry of substances into the brain) requires an understanding of the biological firewall. It is also of utmost importance to understand the physicochemical properties of the said drug and how it engages the BBB to avoid undesired side effects. Since fewer than 5% of the tested molecules can pass through the BBB, drug development pertaining to brain-related disorders takes inordinately long to develop. Furthermore, in most cases it is also unsuccessful for allied reasons. Several drug delivery systems (DDSs) have shown excellent potential in drug delivery across the BBB while demonstrating minimal side effects. This mini-review summarizes key features of the BBB, recapitulates recent advances in our understanding of the BBB, and highlights existing strategies for the delivery of drug to the brain parenchyma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...