RESUMO
Retinoic acid receptors (RAR) and retinoid X receptors (RXR) are ligand-mediated transcription factors that synchronize intricate signaling networks in metazoans. Dimer formation between these two nuclear receptors mediates the recruitment of co-regulatory complexes coordinating the progression of signaling cascades during developmental and regenerative events. In the present study we identified and characterized the receptors for retinoic acid in the sea cucumber Holothuria glaberrima; a model system capable of regenerative organogenesis during adulthood. Molecular characterizations revealed the presence of three isoforms of RAR and two of RXR as a consequence of alternative splicing events. Various analyses including: primary structure sequencing, phylogenetic analysis, protein domain prediction, and multiple sequence alignment further confirmed their identity. Semiquantitative reverse transcription PCR analysis of each receptor isoform herein identified showed that the retinoid receptors are expressed in all tissues sampled: the mesenteries, respiratory trees, muscles, gonads, and the digestive tract. During regenerative organogenesis two of the receptors (RAR-L and RXR-T) showed differential expression in the posterior segment while RAR-S is differentially expressed in the anterior segment of the intestine. This work presents the first description of the components relaying the signaling for retinoic acid within this model system.
Assuntos
Perfilação da Expressão Gênica , Holothuria/fisiologia , Intestinos/fisiologia , Receptores do Ácido Retinoico/metabolismo , Processamento Alternativo , Animais , Biologia Computacional , Mapeamento de Sequências Contíguas , DNA Complementar/metabolismo , Regulação da Expressão Gênica , Holothuria/genética , Fases de Leitura Aberta , Filogenia , Regeneração , Receptores X de Retinoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transdução de SinaisRESUMO
Contemporary genetic variation among Latin Americans human groups reflects population migrations shaped by complex historical, social and economic factors. Consequently, admixture patterns may vary by geographic regions ranging from countries to neighborhoods. We examined the geographic variation of admixture across the island of Puerto Rico and the degree to which it could be explained by historic and social events. We analyzed a census-based sample of 642 Puerto Rican individuals that were genotyped for 93 ancestry informative markers (AIMs) to estimate African, European and Native American ancestry. Socioeconomic status (SES) data and geographic location were obtained for each individual. There was significant geographic variation of ancestry across the island. In particular, African ancestry demonstrated a decreasing East to West gradient that was partially explained by historical factors linked to the colonial sugar plantation system. SES also demonstrated a parallel decreasing cline from East to West. However, at a local level, SES and African ancestry were negatively correlated. European ancestry was strongly negatively correlated with African ancestry and therefore showed patterns complementary to African ancestry. By contrast, Native American ancestry showed little variation across the island and across individuals and appears to have played little social role historically. The observed geographic distributions of SES and genetic variation relate to historical social events and mating patterns, and have substantial implications for the design of studies in the recently admixed Puerto Rican population. More generally, our results demonstrate the importance of incorporating social and geographic data with genetics when studying contemporary admixed populations.
Assuntos
Genética Populacional , Genoma Humano/genética , Grupos Raciais/genética , Geografia , Humanos , Porto Rico/etnologia , Comportamento SocialRESUMO
The haplogroup identities of 800 mtDNAs randomly and systematically selected to be representative of the population of Puerto Rico were determined by restriction fragment length polymorphism (RFLP), revealing maternal ancestries in this highly mixed population of 61.3% Amerindian, 27.2% sub-Saharan African, and 11.5% West Eurasian. West Eurasian frequencies were low in all 28 municipalities sampled, and displayed no geographic patterns. Thus, a statistically significant negative correlation was observed between the Amerindian and African frequencies of the municipalities. In addition, a statistically highly significant geographic pattern was observed for Amerindian and African mtDNAs. In a scenario in which Amerindian mtDNAs prevailed on either side of longitude 66 degrees 16' West, Amerindian mtDNAs were more frequent west of longitude 66 degrees 16' West than east of it, and the opposite was true for African mtDNAs. Haplogroup A had the highest frequency among Amerindian samples (52.4%), suggesting its predominance among the native Taínos. Principal component analysis showed that the sub-Saharan African fraction had a strong affinity to West Africans. In addition, the magnitudes of the Senegambian and Gulf of Guinea components in Puerto Rico were between those of Cape Verde and São Tomé. Furthermore, the West Eurasian component did not conform to European haplogroup frequencies. HVR-I sequences of haplogroup U samples revealed a strong North African influence among West Eurasian mtDNAs and a new sub-Saharan African clade.