Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38853893

RESUMO

Background: Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another. Methods: Using FLiCRE (Fast Light and Calcium-Regulated Expression; a newly developed technique which permits the trapping of acutely activated neuronal ensembles) and operant-self administration (OSA), we tagged striatal neurons activated during alcohol-taking behaviors. We used FLiCRE to express an inhibitory halorhodopsin in alcohol-taking neurons, permitting loss-of-function manipulations. Results: We found that the inhibition of OSA-tagged alcohol-taking neurons decreased both alcohol-seeking and -taking behaviors in future OSA trials. In addition, optogenetic inhibition of these OSA-tagged alcohol-taking neurons during extinction training facilitated the extinction of alcohol-seeking behaviors. Furthermore, inhibition of these OSA-tagged alcohol-taking neurons suppressed the reinstatement of alcohol-seeking behaviors, but, interestingly, it did not significantly suppress alcohol-taking behaviors during reinstatement. Conclusions: Our findings suggest that alcohol-taking neurons are crucial for future alcohol-seeking behaviors during extinction and reinstatement. These results may help in the development of new therapeutic approaches to enhance extinction and suppress relapse in individuals with AUD.

2.
Curr Protoc ; 3(6): e831, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37358210

RESUMO

Alcohol use disorder (AUD) is a complex disorder characterized by compulsive alcohol use and a lack of control over alcohol intake. Several experimental methods using mouse models have been developed to improve research regarding this disorder. Mouse behavioral paradigms are advantageous in inducing alcohol dependence and evaluating alcohol intake, circumventing ethical issues, and increasing experimental control over human-based experiments. These behavioral methods typically fall under one of two categories: forced exposure and voluntary consumption. This paper highlights two common paradigms used to study AUD in rodent models: one forced exposure method (use of a vapor inhalation system for alcohol exposure) and one voluntary consumption method (the two-bottle choice procedure). The effectiveness and experimental validity of these behavioral paradigms for pathophysiological investigations of AUD and how they can be combined are also discussed, along with their individual strengths and weaknesses. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Vapor inhalation for exposure to alcohol Basic Protocol 2: Intermittent access two-bottle choice procedure (acquisition) Basic Protocol 3: Intermittent access two-bottle choice procedure (measurement) Alternate Protocol: Sucrose fading to encourage voluntary alcohol consumption.


Assuntos
Alcoolismo , Humanos , Camundongos , Animais , Consumo de Bebidas Alcoólicas , Etanol/farmacologia , Administração por Inalação , Modelos Teóricos
3.
Cell Rep ; 42(2): 112089, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36796365

RESUMO

Withdrawal from chronic opioid use often causes hypodopaminergic states and negative affect, which may drive relapse. Direct-pathway medium spiny neurons (dMSNs) in the striatal patch compartment contain µ-opioid receptors (MORs). It remains unclear how chronic opioid exposure and withdrawal impact these MOR-expressing dMSNs and their outputs. Here, we report that MOR activation acutely suppressed GABAergic striatopallidal transmission in habenula-projecting globus pallidus neurons. Notably, withdrawal from repeated morphine or fentanyl administration potentiated this GABAergic transmission. Furthermore, intravenous fentanyl self-administration enhanced GABAergic striatonigral transmission and reduced midbrain dopaminergic activity. Fentanyl-activated striatal neurons mediated contextual memory retrieval required for conditioned place preference tests. Importantly, chemogenetic inhibition of striatal MOR+ neurons rescued fentanyl withdrawal-induced physical symptoms and anxiety-like behaviors. These data suggest that chronic opioid use triggers GABAergic striatopallidal and striatonigral plasticity to induce a hypodopaminergic state, which may promote negative emotions and relapse.


Assuntos
Analgésicos Opioides , Corpo Estriado , Corpo Estriado/metabolismo , Fentanila , Receptores Opioides , Afeto , Receptores Opioides mu/metabolismo
4.
Learn Mem ; 29(8): 216-222, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902273

RESUMO

Recent data reveal that the thalamic nucleus reuniens (RE) has a critical role in the extinction of conditioned fear. Muscimol (MUS) infusions into the RE impair within-session extinction of conditioned freezing and result in poor long-term extinction memories in rats. Although this suggests that RE inactivation impairs extinction learning, it is also possible that it is involved in the consolidation of extinction memories. To examine this possibility, we examined the effects of RE inactivation on the consolidation and reconsolidation of fear extinction in male and female rats. Twenty-four hours after auditory fear conditioning, rats underwent an extinction procedure (45 CS-alone trials) in a novel context and were infused with saline (SAL) or MUS within minutes of the final extinction trial. Twenty-four hours later, conditioned freezing to the extinguished CS was assessed in the extinction context. Postextinction inactivation of the RE did not affect extinction retrieval. In a second experiment, rats underwent extinction training and, 24 h later, were presented with a single CS to reactivate the extinction memory; rats were infused with SAL or MUS immediately after the reactivation session. Pharmacological inactivation of the RE did not affect conditioned freezing measured in a drug-free retrieval test the following day. Importantly, we found in a subsequent test that MUS infusions immediately before retrieval testing increased conditioned freezing and impaired extinction retrieval, as we have previously reported. These results indicate that although RE inactivation impairs the expression of extinction, it does not impair either the consolidation or reconsolidation of extinction memories. We conclude that the RE may have a critical role in suppressing context-inappropriate fear memories in the extinction context.


Assuntos
Medo , Núcleos da Linha Média do Tálamo , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Feminino , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...