Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(4): e0215064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973945

RESUMO

The S. cerevisiae Pop2 protein is an exonuclease in the Ccr4-Not complex that is a conserved regulator of gene expression. Pop2 regulates gene expression post-transcriptionally by shortening the poly(A) tail of mRNA. A previous study has shown that Pop2 is phosphorylated at threonine 97 (T97) by Yak1 protein kinase in response to glucose limitation. However, the physiological importance of Pop2 phosphorylation remains unknown. In this study, we found that Pop2 is phosphorylated at serine 39 (S39) under unstressed conditions. The dephosphorylation of S39 was occurred rapidly after glucose depletion, and the addition of glucose to the glucose-deprived culture recovered this phosphorylation, suggesting that Pop2 phosphorylation at S39 is regulated by glucose. This glucose-regulated phosphorylation of Pop2 at S39 is dependent on Pho85 kinase. We previously reported that Pop2 takes a part in the cell wall integrity pathway by regulating LRG1 mRNA; however, S39 phosphorylation of Pop2 is not involved in LRG1 expression. On the other hand, Pop2 phosphorylation at S39 is involved in the expression of HSP12 and HSP26, which encode a small heat shock protein. In the medium supplemented with glucose, Pop2 might be phosphorylated at S39 by Pho85 kinase, and this phosphorylation contributes to repress the expression of HSP12 and HSP26. Glucose starvation inactivated Pho85, which resulted in the derepression of HSP12 and HSP26, together with other glucose sensing mechanisms. Our results suggest that Pho85-dependent phosphorylation of Pop2 is a part of the glucose sensing system in yeast.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Proteínas de Choque Térmico/metabolismo , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Repressão Catabólica , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/genética , Fosforilação , Ribonucleases/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/química
2.
Genes Cells ; 23(12): 988-997, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30281869

RESUMO

The PUF RNA-binding protein Puf5 is involved in regulation of the cell wall integrity (CWI) pathway in yeast. Puf5 negatively regulates expression of LRG1 mRNA, encoding for a GTPase-activating protein for Rho1 small GTPase. Here, we further analyzed the effect of Puf5 on LRG1 expression, together with Ccr4 and Pop2 deadenylases, Dhh1 decapping activator, and other PUF proteins. We found that the growth defect of puf5∆ mutant was enhanced by ccr4∆ mutation, which was partially suppressed by LRG1 deletion. Consistently, Lrg1 protein level was much more up-regulated in ccr4Δ puf5Δ double mutant than in each single mutant. Interestingly, LRG1 poly(A) tail length was longer in ccr4∆ mutant but not in puf5∆ mutant. Thus, Puf5 regulates LRG1 expression independently from Ccr4, although Puf5 recruits the Ccr4-Not deadenylase complex for mRNA destabilization. Unexpectedly, puf6Δ mutation suppressed the growth defect caused by ccr4Δ puf5∆ mutation. Loss of Rpl43a and Rpl43b ribosomal proteins, the previously identified Puf6 interactors, also suppressed the growth defect of ccr4Δ puf5Δ mutant. Our results suggest that Puf5 functions in the CWI pathway by regulating LRG1 expression in a deadenylase-independent manner, and that Puf6 is involved in the Ccr4- and Puf5-mediated regulation of cell growth through association with Rpl43.


Assuntos
Parede Celular/metabolismo , Proteínas Ativadoras de GTPase/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Ativadoras de GTPase/metabolismo , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...