Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Endocrinol ; 12(9): 1420-31, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9731709

RESUMO

Using an ATP-depletion paradigm to augment glucocorticoid receptor (GR) binding to the nuclear matrix, we have identified a minimal segment of the receptor that constitutes a nuclear matrix targeting signal (NMTS). While previous studies implicated a role for the receptor's DNA-binding domain in nuclear matrix targeting, we show here that this domain of rat GR is necessary, but not sufficient, for matrix targeting. A minimal NMTS can be generated by linking the rat GR DNA-binding domain to either its tau2 transactivation domain in its natural context, or a heterologous transactivation domain derived from the Herpes simplex virus VP16 protein. The transactivation and nuclear matrix-targeting activities of tau2 are separable, as transactivation mutants were identified that either inhibited or had no apparent effect on matrix targeting of tau2. A functional interaction between the NMTS of rat GR and the RNA-binding nuclear matrix protein hnRNP U was revealed in cotransfection experiments in which hnRNP U overexpression was found to interfere with the transactivation activity of GR derivatives that possess nuclear matrix-binding capacity. We have therefore ascribed a novel function to a steroid hormone transactivation domain that could be an important component of the mechanism used by steroid hormone receptors to regulate genes in their native configuration within the nucleus.


Assuntos
DNA/metabolismo , Sinais de Localização Nuclear , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Células CHO , Cricetinae , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Ribonucleoproteínas Nucleares Heterogêneas , RNA/metabolismo , Ratos , Ribonucleoproteínas/metabolismo
2.
J Steroid Biochem Mol Biol ; 66(4): 241-6, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9744521

RESUMO

Calcitrol, 1,25 dihydroxyvitamin D3 (1,25-D3) has an important role in the antiproliferative and growth regulatory effects on normal and neoplastic cells (e.g. prostate cancer cells). 1,25-D3 binds to the vitamin D receptor (VDR), a member of the steroid receptor superfamily. Steroids, via intranuclear receptors, have been demonstrated to have high affinity binding to the nuclear matrix, the tissue specific scaffolding of the nucleus that is involved in the organization of DNA, replication and transcription. We hypothesized that the VDR interacts closely with the nuclear matrix in both human and rat tissues. In the studies described here, nuclear matrix proteins (NMP) were extracted from a number of rat and human tissues and immunoblot analysis performed using a rat anti-VDR antibody. The results from these studies reveal that the anti-VDR antibody detects six forms of the VDR in the NMP preparations: human testis demonstrated a protein of 57 and 52 kDa molecular weight compared with 57 and 37 kDa in the rat testis. Human prostate demonstrated proteins of 52 kDa compared to rat ventral (57 and 37 kDa) and dorsal prostate (52 and 26 kDa). Human and rat bladder NMP demonstrated a protein binding at 55 kDa and rat seminal vesicle NMP binding at 48 kDa. This is the first report of VDRs associated with the nuclear matrix. The varying molecular weight proteins reactive with the anti-VDR antibody within these tissues may represent different isoforms, proteolytic cleavage of a larger VDR or post-translational modification. The VDR-NMP interaction may be involved in the tissue specific actions of 1,25-D3 especially growth regulatory and antiproliferative effects.


Assuntos
Matriz Nuclear/química , Receptores de Calcitriol/análise , Animais , Humanos , Immunoblotting , Rim/química , Masculino , Próstata/química , Ratos , Ratos Sprague-Dawley , Testículo/química , Bexiga Urinária/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...