Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pharmacol Ther ; 222: 107784, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33316286

RESUMO

UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.


Assuntos
Inflamação , Neoplasias , Terapia Ultravioleta , Humanos , Inflamação/radioterapia , Neoplasias/radioterapia
4.
Front Med (Lausanne) ; 5: 232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250844

RESUMO

Phototherapy is an efficient treatment for many cutaneous diseases that involve the activation of inflammatory pathways or the overgrowth of cells with aberrant phenotype. In this review, we discuss recent advances in photoimmunology, focusing on the effects of UV-based therapies currently used in dermatology. We describe the molecular responses to the main forms of photo(chemo)therapy such as UVB, UVA-1, and PUVA that include the triggering of apoptotic or immunosuppressive pathways and help to clear diseased skin. The early molecular response to UV involves DNA photoproducts, the isomerization of urocanic acid, the secretion of biophospholipids such as platelet activating factor (PAF), the activation of aryl hydrocarbon receptor and inflammasome, and vitamin D synthesis. The simultaneous and complex interaction of these events regulates the activity of the immune system both locally and systemically, resulting in apoptosis of neoplastic and/or benign cells, reduction of cellular infiltrate, and regulation of cytokines and chemokines. Regulatory T-cells and Langerhans cells, among other skin-resident cellular populations, are deeply affected by UV exposure and are therefore important players in the mechanisms of immunomodulation and the therapeutic value of UV in all its forms. We weigh the contribution of these cells to the therapeutic application of UV and how they may participate in transferring the direct impact of UV on the skin into local and systemic immunomodulation. Moreover, we review the therapeutic mechanisms revealed by clinical and laboratory animal investigations in the most common cutaneous diseases treated with phototherapy such as psoriasis, atopic dermatitis, vitiligo, and cutaneous T-cell lymphoma. Better understanding of phototherapeutic mechanisms in these diseases will help advance treatment in general and make future therapeutic strategies more precise, targeted, personalized, safe, and efficient.

5.
Cell Death Dis ; 9(8): 835, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082827

RESUMO

Exposure of skin to ultraviolet (UV) radiation induces DNA damage, inflammation, and immune suppression that ultimately lead to skin cancer. However, some of the pathways that regulate these events are poorly understood. We exposed mice to UVB to study its early effects in the absence of Cbl-b, a known suppressor of antitumor immune response in the skin. Cbl-b-/- mice were protected from UV-induced cell damage as shown by the lower number of cyclobutane pyrimidine dimers and sunburn cells in exposed skin compared to wild-type mice. Microarray data revealed that deficiency of Cbl-b resulted in differential expression of genes involved in apoptosis evasion, tumor suppression and cell survival in UV-exposed skin. After UVB, Cbl-b-/- mice upregulated gene expression pattern associated with regulation of epidermal cell proliferation linked to Wnt signaling mediators and enzymes that relate to cell removal and tissue remodeling like MMP12. Additionally, the skin of Cbl-b-/- mice was protected from chronic inflammatory responses and epidermal hyperplasia in a 4-weeks UVB treatment protocol. Overall, our results suggest a novel role for Cbl-b in regulating inflammation and physiologic clearance of damaged cells in response to UVB by modulating inflammatory gene signature.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Pele/efeitos da radiação , Raios Ultravioleta , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Regulação da Expressão Gênica/efeitos da radiação , Inflamação/genética , Inflamação/patologia , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-cbl/deficiência , Pele/metabolismo , Pele/patologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/efeitos da radiação , beta Catenina/metabolismo
6.
Clin Cancer Res ; 22(13): 3328-39, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26851186

RESUMO

PURPOSE: Sustained inflammation is a key feature of mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). Resident IL9-producing T cells have been found in skin infections and certain inflammatory skin diseases, but their role in MF is currently unknown. EXPERIMENTAL DESIGN: We analyzed lesional skin from patients with MF for the expression of IL9 and its regulators. To determine which cells were producing IL9, high-throughput sequencing was used to identify malignant clones and Vb-specific antibodies were employed to visualize malignant cells in histologic preparations. To explore the mechanism of IL9 secretion, we knocked down STAT3/5 and IRF4 by siRNA transfection in CTCL cell lines receiving psoralen+UVA (PUVA) ± anti-IL9 antibody. To further examine the role of IL9 in tumor development, the EL-4 T-cell lymphoma model was used in C57BL/6 mice. RESULTS: Malignant and reactive T cells produce IL9 in lesional skin. Expression of the Th9 transcription factor IRF4 in malignant cells was heterogeneous, whereas reactive T cells expressed it uniformly. PUVA or UVB phototherapy diminished the frequencies of IL9- and IL9r-positive cells, as well as STAT3/5a and IRF4 expression in lesional skin. IL9 production was regulated by STAT3/5 and silencing of STAT5 or blockade of IL9 with neutralizing antibodies potentiated cell death after PUVA treatment in vitro IL9-depleted mice exhibited a reduction of tumor growth, higher frequencies of regulatory T cells, and activated CD4 and CD8 T lymphocytes. CONCLUSIONS: Our results suggest that IL9 and its regulators are promising new targets for therapy development in mycosis fungoides. Clin Cancer Res; 22(13); 3328-39. ©2016 AACR.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Interleucina-9/biossíntese , Micose Fungoide/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT5/genética , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fatores Reguladores de Interferon/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Linfócitos T Reguladores/imunologia , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...